http://iet.metastore.ingenta.com
1887

Synthesis of carbon nanostructures from coal by chemical solid synthesis method

Synthesis of carbon nanostructures from coal by chemical solid synthesis method

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Carbon nanofibres (CNFs) and carbon spheres (CSs) are successfully synthesised using coal particles (<44 micron) in solid phase. Coal and ferrocene as catalyst were fed to the reactor in the solid form. The reaction is carried out in a tubular reactor. The as-synthesised samples have been characterised through Raman spectroscopy, X-ray diffraction, scanning and transmission electron microscopy. The results show CNFs formed in 25–40 nm and mono dispersed CSs in 200–300 nm are amorphous. A feasible mechanism of CNFs and CSs formation from coal described here with the help of coal structure.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 8. Pena, A., Puerta, J., Guerrero, A., et al: ‘Catalytic chemical vapor deposition synthesis of carbon aerogels of high- surface area and porosity’, J. Nanotechnol., 2012, 1, pp. 510.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • 36. Khorrami, S.A., Lotfi, R.: ‘Influence of carrier gas flow rate on carbon nanotubes growth by TCVD with Cu catalyst’, J. Saudi Chem. Soc., 2013, doi:10.1016/ j.jscs.2013.04.004.
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
      • 49. Bottes, G.: ‘Pretreatment method for the synthesis of carbon nanotubes and carbon nanostructures from coal and carbon chars’, 2010, Pub. No.: US 2010/0247420 A1.
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
      • 65. Chen, X.W., Timpe, O., Hmid, Sh.B.A., et al: ‘Direct synthesis of carbon nanofibers on modified biomass-derived activated carbon’, Carbon, 2008, 47, pp. 313347.
    66. 66)
      • 66. Chen, L., Bia, J., Wang, Ch., et al: ‘One-step solid-state thermolysis of a metal-organic framework: a simple and facile route to large-scale of multi-walled carbon nanotubes’, Chem. Commun., 2008, doi: 10.1039/b718476j.
    67. 67)
      • 67. Irfan, M.F., Ashri, W.M., Daud, W.: ‘A study of the charring of Datong coal under nitrogen and carbon dioxide atmospheres with particular reference to nano- particle formation’, linked in: http://www.conference.net.au/chemeca2011/papers/404.pdf.
    68. 68)
    69. 69)
    70. 70)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2016.0089
Loading

Related content

content/journals/10.1049/mnl.2016.0089
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address