http://iet.metastore.ingenta.com
1887

Ternary static random access memory using quantum dot gate field-effect transistor

Ternary static random access memory using quantum dot gate field-effect transistor

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Quantum dot gate field-effect transistor (QDGFET) generates three states in their transfer characteristics. A successful model can explain the generation of third state in the transfer characteristics of the QDGFET. The innovative circuit design using QDGFET can be used to design different ternary logic. This Letter discusses the design of ternary logic static random access memory using QDGFET.

References

    1. 1)
      • 1. Kuhn, K.: ‘Moore's law past 32 nm: future challenges in device scaling’. Thirteenth Int. Workshop on Computational Electronics, IWCE ‘09, 2009, pp. 16.
    2. 2)
      • 2. Woo, R., Koh, H.-Y.S., Onal, C., et al: ‘BTBT transistor scaling: can they be competitive with MOSFETs?’. Device Research Conf., Santa Barbara, CA, 2008.
    3. 3)
      • 3. Zeitzoff, P.M.: ‘MOSFET scaling trends and challenges through the end of the roadmap’. Custom Integrated Circuit Conf., 2004.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 8. Karmakar, S., Suresh, A.P., Chandy, J.A., et al: ‘Design of ADCs and DACs using 3-state Quantum DOT Gate FETs’. Int. Semiconductor Device Research Symp., 2009.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 13. Karmakar, S., Gogna, M., Jain, F. C.: ‘Application of quantum dot gate non-volatile memory (QDNVM) in image segmentation’, Signal, Image and Video Process, pp. 18, doi: 10.1007/s 11760-015-0773-5.
    14. 14)
    15. 15)
      • 15. Karmakar, S., Chandy, J. A., Jain, F. C.: ‘Implementation of ADC and DAC using quantum dot gate non-volatile memory’, J. Signal Process Syst., 41, (8), pp. 21842192, doi: 10.1007/sl1265-013-0789-4.
    16. 16)
    17. 17)
    18. 18)
      • 18. Karmakar, S., Jain, F. C.: ‘Future Semiconductor Devices for Multi-Valued Logic Circuit Design’, Mater. Sci. Appl., 2012, 3, pp. 807814.
    19. 19)
    20. 20)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2015.0200
Loading

Related content

content/journals/10.1049/mnl.2015.0200
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address