Simulation and experiment of capillary-driven planar baffle micromixers

Simulation and experiment of capillary-driven planar baffle micromixers

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Different capillary-driven planar baffle micromixers with a trigger valve which were fabricated on polymethylmethacrylate sheets using CO2 laser ablation and thermal bonding are investigated. Two main modified staggered and meander baffle structures were used to compare the mixing efficiency. The modified staggered baffle structure has lower capillary flow resistance and faster speed compared with the meander one. Conversely, the meander baffle structure has higher mixing efficiency at lower flow speed with enough diffusion time than the modified staggered one. The effective channel height of the trigger valve was simulated to be between 220 and 434 μm for merging two fluids at negative capillary pressure. The experiments also verified the trigger value worked at the channel height of 351 μm for two fluids merged together to flow forward but it failed at 169 μm height for only one fluid flow without merging. The mixer with the meander baffle structure performed wiht the best mixing efficiency of 94% among the design structures because of the long flow time and short average diffusion length in the mixing zone.


    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)

Related content

This is a required field
Please enter a valid email address