Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Improved photovoltaic characteristics of amorphous Si thin-film solar cells containing nanostructure silver conductors fabricated using a non-vacuum process

A low-cost, highly reflective, liquid organic nanostructure silver conductor with superior conductivity, using back contact reflectors in amorphous silicon (a-Si) single-junction superstrate configuration thin-film solar cells produced using a non-vacuum screen printing process is proposed. The conductive paste is composed of Ag nanowires (Ag NWs) mixed with an Ag nanostructure (Ag NS) sheet. The paste is referred to as ‘Ag NWS’. A comparison of silver conductor samples with vacuum-system-sputtered silver samples indicated that the short-circuit current density (J sc) and the open-circuit voltage (V oc) of Ag NWS conductor cells exceeded 0.22 mA/cm2 and 66 mV, respectively. The Ag NWS conductor with back contact reflectors in solar cells was analysed using external quantum efficiency measurements to effectively enhance light-trapping ability in a long wavelength region (580–700 nm). The cells constructed using the optimised Ag NWS demonstrated an increase of approximately 6.1% in power conversion efficiency under AM 1.5 illumination. These results indicated that the Ag NWS conductor back contact reflector layer is a suitable candidate for high-performance a-Si thin-film solar cells.

References

    1. 1)
      • 13. Liu, J.C., Lin, C.C., Chen, Y.H., et al: ‘Enhancing light-trapping properties of amorphous Si thin-film solar cells containing high-reflective silver conductors fabricated using a nonvacuum process’, Int. J. Photoenergy, 2014, 2014, pp. 627127-1627127-5.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 19. Chen, Y.R., Li, Z.Q., Chen, X.H., et al: ‘Improved performance of flexible amorphous silicon solar cells with silver nanowires’, J. Appl. Phys., 2012, 112, pp. 124320-1124320-6.
    6. 6)
      • 1. Konagai, M.: ‘Present status and future prospects of silicon thin-film solar cells’, Jpn. J. Appl. Phys., 2011, 3, pp. 030001-1030001-12.
    7. 7)
    8. 8)
      • 15. Ellmer, K., Klein, A., Rech, B.: ‘Transparent conductive zinc oxide: basics and applications in thin film solar cells’ (Springer Berlin Heidelberg, Berlin, 2008).
    9. 9)
    10. 10)
    11. 11)
      • 4. Shah, A.V.: ‘Thin-film silicon solar cells’ (EPFL Press, Lausanne, 2010).
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 20. Springer, J., Rech, B., Reetz, W., et al: ‘Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates’, Sol. Energy Mater. Sol. Cells, 2005, 85, pp. 111.
    16. 16)
    17. 17)
      • 21. Sze, M., Ng, K.K.: ‘Physics of semiconductor devices’ (John Wiley & Sons, Inc., Hoboken, New Jersey, 2007).
    18. 18)
    19. 19)
    20. 20)
      • 12. Schropp, R.E.I., Zeman, M.: ‘Amorphous and microcystalline silicon solar cells: modeling, materials and device technology’ (Kluwer Academic Publishers, Boston, MA, 1998).
    21. 21)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2014.0416
Loading

Related content

content/journals/10.1049/mnl.2014.0416
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address