access icon free Observation of Au nanoparticles on the surface of silicon nanowire grown by rapid thermal chemical vapour deposition

The size evolution of gold (Au) nanoparticles (NPs) on the sidewall surface of silicon (Si) nanowires (NWs) has been investigated by thermal treatments, using high-angle annular dark field scanning transmission electron microscopy. The Si NWs grown at 550°C by rapid thermal chemical vapour deposition have been observed to be surrounded by Au NPs with less than 5 nm diameter and ∼1012 cm−2 density on the whole Si NW surface. To explore the size change of Au NPs, the Au NPs on the Si NW were annealed ex situ at the temperature range of 700–900°C for 20 min. The sizes of NPs for samples annealed at 700, 800 and 900°C represent Gaussian distribution with the average size of 4, 6 and 7 nm, respectively, while at high temperatures above 900°C, they change to a bimodal distribution. It is suggested that the surface diffusion rate of Au NPs on Si NW is much lower than that on the Si substrate because of the substitutional diffusion mechanism.

Inspec keywords: nanowires; surface diffusion; scanning-transmission electron microscopy; Gaussian distribution; gold; semiconductor growth; chemical vapour deposition; elemental semiconductors; silicon; nanoparticles; nanofabrication

Other keywords: substitutional diffusion mechanism; thermal treatments; sidewall surface; Gaussian distribution; size 4 nm to 7 nm; Si; temperature 550 degC to 900 degC; nanoparticles; Au; bimodal distribution; size evolution; time 20 min; silicon nanowire surface; rapid thermal chemical vapour deposition; high-angle annular dark held scanning transmission electron microscopy; surface diffusion rate

Subjects: Low-dimensional structures: growth, structure and nonelectronic properties; Nanometre-scale semiconductor fabrication technology; Chemical vapour deposition; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Semiconductor superlattices, quantum wells and related structures; Chemical vapour deposition; Surface diffusion, segregation and interfacial compound formation; Elemental semiconductors; Methods of nanofabrication and processing

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 38. Wolf, H.F.: ‘Silicon semiconductor data’ (Pergamon Press, 1969).
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 32. Atkins, P.: ‘Atkins’ physical chemistry’ (Oxford University Press, Oxford, UK, 2010, 8th edn).
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 34. Oura, K.: ‘Surface science: an introduction’ (Springer, Berlin, 2003).
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2014.0389
Loading

Related content

content/journals/10.1049/mnl.2014.0389
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading