access icon free Enhanced electrical and optoelectrical properties of cadmium selenide nanobelts by chlorine doping

Single-crystalline chlorine-doped cadmium selenide (CdSe) nanobelts (NBs) with a wurtzite structure were synthesised by using CdSe and InCl3 powder as sources via a co-evaporation approach. The investigation of the performance of the field-effect transistors fabricated from Cl-doped NBs shows n-type conduction behaviour and enhanced conductivity (1–70 S/cm). Furthermore, it is found that the photoconductivity (illuminated by a white light with a power density of 1.3 mW/cm2) increases with the enhancement of the conductivity. Photoconductive analysis reveals that the Cl-doped NBs show excellent photoresponse properties, with responsivity of 8.87 × 105 AW−1 and a corresponding external quantum efficiency of 1.74 × 106 when illuminated under a 650 nm light and biased 1 V. In addition, the electrical properties of the Cl-doped NBs can be influenced by changing the ambiance, which is caused by their surface states.

Inspec keywords: surface states; photoconductivity; nanofabrication; cadmium compounds; II-VI semiconductors; field effect transistors; electrical conductivity; vacuum deposition; semiconductor doping; nanostructured materials

Other keywords: n-type conduction behaviour; power density; photoconductivity; optoelectrical properties; quantum efhciency; CdSe:Cl; single-crystalline chlorine-doped cadmium selenide nanobelts; photoresponse properties; surface states; enhanced electrical properties; held-effect transistors

Subjects: Semiconductor doping; Vacuum deposition; Other field effect devices; Doping and implantation of impurities; Methods of nanofabrication and processing; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Vacuum deposition; Electrical properties of II-VI and III-V semiconductors (thin films, low-dimensional and nanoscale structures); Surface states, surface band structure, surface electron density of states; II-VI and III-V semiconductors; Photoconduction and photovoltaic effects; photodielectric effects; Nanometre-scale semiconductor fabrication technology

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 6. Jiang, Y., Zhang, W., Jie, J., et al: ‘Photoresponse properties of CdSe single-nanoribbon photodetectors’, Adv. Funct. Mater., 2007, 17, pp. 17951800 (doi: 10.1002/adfm.200600351).
    20. 20)
      • 18. Liao, Z., Liu, K., Zhang, J., et al: ‘Effect of surface states on electron transport in individual ZnO nanowires’, Phys. Lett. A, 2007, 367, pp. 207210 (doi: 10.1016/j.physleta.2007.03.006).
    21. 21)
      • 12. Dong, L., Niu, S., Pan, C., et al: ‘Piezo-phototronic effect of CdSe nanowires’, Adv. Mater., 2012, 24, pp. 54705475 (doi: 10.1002/adma.201201385).
    22. 22)
      • 9. Wu, P., Dai, Y., Sun, T., et al: ‘Impurity-dependent photoresponse properties in single CdSe nanobelt photodetectors’, ACS Appl. Mater. Interfaces, 2011, 3, pp. 18591864 (doi: 10.1021/am200043c).
    23. 23)
      • 10. Yu, Y., Kamat, P.V., Kuno, M.: ‘A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance’, Adv. Funct. Mater., 2010, 20, pp. 14641472 (doi: 10.1002/adfm.200902372).
    24. 24)
      • 4. Niasari, S.M., Zare, M.E., Sobhani, A.: ‘Synthesis and characterization of cadmium selenide nanostructures by simple sonochemical method’, Micro Nano Lett., 2012, 7, pp. 831834 (doi: 10.1049/mnl.2012.0443).
    25. 25)
      • 13. Wu, C., Jie, J., Wang, L., et al: ‘Chlorine-doped n-type CdS nanowires with enhanced photoconductivity’, Nanotechnology, 2010, 21, p. 505203 (doi: 10.1088/0957-4484/21/50/505203).
    26. 26)
      • 3. Hu, Z., Zhang, X., Xie, C., et al: ‘Doping dependent crystal structures and optoelectronic properties of n-type CdSe: Ga nanowires’, Nanoscale, 2011, 3, pp. 47984783 (doi: 10.1039/c1nr10619h).
    27. 27)
      • 17. Jie, J., Zhang, W., Jiang, Y., et al: ‘Photoconductive characteristics of single-crystal CdS nanoribbons’, Nano Lett., 2006, 6, pp. 18871892 (doi: 10.1021/nl060867g).
    28. 28)
      • 14. Du, L., Lei, Y.: ‘Synthesis of high-quality Cl-doped CdSe nanobelts and their application in nanodevices’, Mater. Lett., 2013, 106, pp. 100103 (doi: 10.1016/j.matlet.2013.04.107).
    29. 29)
      • 15. Zhang, Q., Qi, J., Huang, Y., et al: ‘Electron irradiation effect on the Schottky gate of ZnO nanowires-based field effect transistors’, Micro Nano Lett., 2011, 6, pp. 437440 (doi: 10.1049/mnl.2011.0229).
    30. 30)
      • 8. Dai, Y., Yu, B., Ye, Y., et al: ‘High-performance CdSe nanobelt based MESFETs and their application in photodetection’, J. Mater. Chem., 2012, 22, pp. 1844218446 (doi: 10.1039/c2jm32890a).
    31. 31)
      • 7. Zhao, L., Hu, L., Fang, X.: ‘Growth and device application of CdSe nanostructures’, Adv. Funct. Mater., 2012, 22, pp. 15511566 (doi: 10.1002/adfm.201103088).
    32. 32)
      • 11. Zhang, L., Jia, Y., Wang, S., et al: ‘Carbon nanotube and CdSe nanobelt Schottky junction solar cells’, Nano Lett., 2010, 10, pp. 35833589 (doi: 10.1021/nl101888y).
    33. 33)
      • 5. Huang, Y., Duan, X., Lieber, C.M.: ‘Nanowires for integrated multicolor nanophotonics’, Small, 2005, 1, pp. 142147 (doi: 10.1002/smll.200400030).
    34. 34)
      • 16. Li, L., Wu, P., Fang, X., et al: ‘Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors’, Adv. Mater., 2010, 22, pp. 31613165 (doi: 10.1002/adma.201000144).
    35. 35)
      • 1. Liu, C., Wu, P., Sun, T., et al: ‘Synthesis of high quality n-type CdSe nanobelts and their applications in nanodevices’, J. Phys. Chem. C, 2009, 113, pp. 1447814481 (doi: 10.1021/jp9031139).
    36. 36)
      • 2. He, Z., Jie, J., Zhang, W., et al: ‘Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping’, Small, 2009, 5, pp. 345350 (doi: 10.1002/smll.200801006).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0611
Loading

Related content

content/journals/10.1049/mnl.2013.0611
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading