access icon free SnS nanostructures prepared by simple film technique: catalyst-free vacuum thermal evaporation

SnS nanostructures were synthesised by simple vacuum thermal evaporation without any catalysts using tin chips and sulphur as the starting materials. The morphology was characterised by scanning electron microscopy and transmission electron microscopy (TEM) equipped with a high-resolution TEM. It was found that the as-prepared products were mostly tube shaped with a uniform geometry. The length of the nanostructures was several μm, the outer diameter and the thickness of the tubes was about 40–70 and 10–20 nm, respectively. The phase was analysed by X-ray diffraction and confirmed that the as-prepared products were of the orthorhombic phase. The photoluminescence spectra showed two emission bandcentres at 555.4 nm (2.24 eV) and at 785.0 nm (1.58 eV), which indicates that the SnS nanostructures could be used to prepare visible or an infrared light emitter or other optical devices.

Inspec keywords: tin compounds; nanostructured materials; photoluminescence; scanning electron microscopy; transmission electron microscopy; vacuum deposition; X-ray diffraction

Other keywords: X-ray diffraction; visible light emitter; wavelength 785 nm; starting materials; as-prepared products; transmission electron microscopy; photoluminescence spectra; high-resolution TEM; wavelength 555.4 nm; catalyst-free vacuum thermal evaporation; electron volt energy 2.24 eV; nanostructures; emission bandcentres; optical devices; SnS; scanning electron microscopy; tin chips; electron volt energy 1.58 eV; orthorhombic phase; simple film technique; infrared light emitter

Subjects: Photoluminescence in other inorganic materials; Methods of nanofabrication and processing; Vacuum deposition; Electron microscopy determinations of structures; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 22. Wang, Z.: ‘Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices’, Adv. Mater., 2003, 15, pp. 432436 (doi: 10.1002/adma.200390100).
    25. 25)
      • 16. Radovsky, G., Popovitz-Biro, R., Staiger, M., et al: ‘Synthesis of copious amounts of SnS2 and SnS2/SnS nanotubes with ordered superstructures’, Angew. Chem. Int. Ed., 2011, 51, pp. 1231612320 (doi: 10.1002/anie.201104520).
    26. 26)
      • 1. Fang, X., Zhai, T., Gautam, U.K., et al: ‘ZnS nanostructures: from synthesis to applications’, Prog. Mater. Sci., 2011, 56, pp. 175287 (doi: 10.1016/j.pmatsci.2010.10.001).
    27. 27)
      • 15. Zhang, H., Hu, C., Wang, X., Xi, Y., Li, X.: ‘Synthesis and photosensitivity of SnS nanobelts’, J. Alloys Compd., 2012, 513, pp. 15 (doi: 10.1016/j.jallcom.2011.09.096).
    28. 28)
      • 8. Zhao, Y., Zhang, Z., Dang, H., Liu, W.: Mater. Sci. Eng. B, 2004, 113, pp. 175178.
    29. 29)
      • 18. Chang, H., In, E., Kong, K.J., Lee, J.O., Choi, Y., Ryu, B.H.: ‘First-principles studies of SnS2 nanotubes: a potential semiconductor nanowire’, J. Phys. Chem. B, 2005, 109, pp. 302 (doi: 10.1021/jp044983o).
    30. 30)
      • 20. Liu, Y., Hou, D., Wang, G.: ‘Synthesis and characterization of SnS nanowires in cetyltrimethylammoniumbromide (CTAB) aqueous solution’, Chem. Phys. Lett., 2003, 379, pp. 6773 (doi: 10.1016/j.cplett.2003.08.014).
    31. 31)
      • 11. Wang, N., Cai, Y., Zhang, R.: ‘Growth of nanowires’, Mater. Sci. Eng. R, 2008, 60, pp. 151 (doi: 10.1016/j.mser.2008.01.001).
    32. 32)
      • 19. Gao, C., Shen, H., Sun, L., Shen, Z.: ‘Chemical bath deposition of SnS flms with different crystal structures’, Mater. Lett., 2011, 65, pp. 14131415 (doi: 10.1016/j.matlet.2011.02.017).
    33. 33)
      • 26. Dai, L., Chen, X., Jian, J., He, M., Hu, B.: ‘Optical and raman scattering studies on SnS nanoparticles’, Appl. Phys. A, 2002, 75, pp. 687689 (doi: 10.1007/s00339-002-1475-8).
    34. 34)
      • 25. Sohilaa, S., Rajalakshmib, M., Ghoshc, C., Muthamizhchelvana, C., Arorab, A.K.: ‘Optical and raman scattering studies on SnS nanoparticles’, J. Alloys Compd., 2011, 509, pp. 58435847 (doi: 10.1016/j.jallcom.2011.02.141).
    35. 35)
      • 13. Zhang, Y., Lu, J., Shen, S., Xu, H., Wang, Q.: ‘Ultralarge single crystal SnS rectangular nanosheets’, Chem. Commun., 2011, 47, pp. 52265228 (doi: 10.1039/c0cc05528j).
    36. 36)
      • 14. Sohila, S., Rajalakshmi, M., Muthamizhchelva, n, C., et al: ‘Synthesis and characterization of SnS nanosheets through simple chemical route’, Mater. Lett., 2011, 65, pp. 11481150 (doi: 10.1016/j.matlet.2010.12.029).
    37. 37)
      • 4. Ramakrishna Reddy, K.T., Purandhara Reddy, P., Datta, P.K., Miles, R.W.: ‘Formation of polycrystalline SnS layars by a two step process’, Thin Solid Films, 2002, 403–404, pp. 116119 (doi: 10.1016/S0040-6090(01)01520-6).
    38. 38)
      • 5. Reddy, K.T.R., Reddy, N.K.: ‘Photovoltaic properties of SnS based solar cells’, Mater. Chem. Phys., 2007, 102, pp. 13 (doi: 10.1016/j.matchemphys.2006.10.009).
    39. 39)
      • 23. Tai, Z., Pan, Z., Wang, Z.: ‘Novel nanostructures of functional oxides synthesized by thermal evaporation’, Adv. Funct. Mater., 2003, 13, pp. 924 (doi: 10.1002/adfm.200390013).
    40. 40)
      • 24. Yang, L., Wang, J., Song, B., et al: ‘Novel route to scalable synthesis of II–VI semiconductor nanowires: catalyst-assisted vacuum thermal evaporation’, J. Crystal Growth, 2010, 312, pp. 28522856 (doi: 10.1016/j.jcrysgro.2010.06.032).
    41. 41)
      • 17. Yella, A., Mugnaioli, E., Therese, H.A., Panthoefer, M., Kolb, U., Tremel, W.: ‘Synthesis of fullerene- and nanotube-like SnS(2) nanoparticles and Sn/S/Carbon nanocomposites’, Chem. Mater., 2009, 21, pp. 24742481 (doi: 10.1021/cm900277j).
    42. 42)
      • 21. Zhang, Y., Lu, J., Shen, S., Xu, H., Wang, Q.: ‘Ultralarge single crystal SnS rectangular nanosheets’, Chem. Commun., 2011, 47, pp. 52265228 (doi: 10.1039/c0cc05528j).
    43. 43)
      • 10. Pan, Z., Dai, Z., Wang, Z.: ‘Nanobelts of semiconducting oxides’, Science, 2001, 291, pp. 19471949 (doi: 10.1126/science.1058120).
    44. 44)
      • 12. Peng, H., Jiang, L., Huang, J., Li, G.: ‘Synthesis of morphologically controlled tin sulfide nanostructures’, J. Nanoparticle Res., 2007, 9, pp. 11631166 (doi: 10.1007/s11051-006-9208-0).
    45. 45)
      • 2. Dumbrava, A., Badea, C., Prodan, G., Ciupina, V.: ‘Synthesis and characterization of cadmium sulfide obtained at room temperature’, Chalcogenide Lett., 2010, 7, pp. 111118.
    46. 46)
      • 7. Kim, J.Y., George, S.M.: ‘Tin monosulfide thin films grown by atomic layer deposition using tin 2,4-pentanedionate and hydrogen sulfide’, J. Phys. Chem. C, 2010, 114, pp. 1759717603 (doi: 10.1021/jp9120244).
    47. 47)
      • 9. Tang, P., Chen, H., Cao, F., et al: ‘Nanoparticulate SnS as an efficient photocatalyst under visible-light irradiation’, Mater. Lett., 2011, 65, pp. 450452 (doi: 10.1016/j.matlet.2010.10.055).
    48. 48)
      • 3. Panda, S.K., Datta, A., Dev, A., Gorai, S., Chaudhuri, S.: 3 ‘Surfactant assisted synthesis of SnS nanowires grown directly on tin foils’, Crystal Growth Des., 2006, 6, pp. 21772181 (doi: 10.1021/cg0602156).
    49. 49)
      • 6. Xia, Y., Yang, P., Sun, Y., et al: ‘One-dimensional nanostructures: synthesis, characterization, and applications’, Adv. Mater., 2003, 15, pp. 353389 (doi: 10.1002/adma.200390087).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0579
Loading

Related content

content/journals/10.1049/mnl.2013.0579
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading