access icon free Inhomogeneity of bulk nanoporous silver fabricated via dealloying Ag-Zn alloy in sulphuric acid

Described is an approach to fabricate bulk nanoporous silver with a diameter of 12 mm and thickness of 5.4 mm via dealloying Ag25Zn75 alloy in 0.1 mol/l sulphuric acid at 0.4 V for 100 h at room temperature. The volume of the bulk nanoporous contracts 14.2% compared with the starting alloy. Meanwhile, crystal structure switches from close-packed hexagonal to face-centred cubic, which can be considered as a type of phase transition during dealloying. An intrinsically inhomogeneous morphology in microscale exists in bulk nanoporous silver by dealloying, which is caused by coarsening of the ligament width via surface diffusion of silver atoms in the electrolyte for different times. Moreover, parallel orientation structures and cracks have been found in the specimen, which could be related to the columnar crystal of starting alloy during solidification. The lattice defects such as stacking faults, lattice distortions and twins can be seen in the ligaments.

Inspec keywords: silver; twinning; cracks; solid-state phase transformations; porosity; electrolytes; nanoporous materials; surface diffusion; stacking faults; nanofabrication; solidification; surface morphology

Other keywords: coarsening; stacking faults; time 100 h; cracks; twinning; lattice distortions; size 12 mm; temperature 293 K to 298 K; size 5.4 mm; solidification; inhomogeneous morphology; sulfuric acid; surface diffusion; close-packed hexagonal-face-centred cubic phase transition; voltage 0.4 V; electrolyte; parallel orientation structures; Ag; bulk nanoporous silver; crystal structure; lattice defects; dealloying

Subjects: Electrochemistry and electrophoresis; Solid-liquid transitions; Surface diffusion, segregation and interfacial compound formation; Fatigue, embrittlement, and fracture; Fatigue, brittleness, fracture, and cracks; Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder; Solid-solid transitions; Stacking faults, stacking fault tetrahedra and other planar or extended defects; Solid surface structure; Solidification; Structure of powders and porous materials; Methods of nanofabrication and processing; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Grain and twin boundaries

References

    1. 1)
      • 9. Parida, S., Kramer, D., Volkert, C.A., Erlebacher, J.: ‘Volume change during the formation of nanoporous gold by dealloying’, Phys. Rev. Lett., 2006, 97, p. 035504 (doi: 10.1103/PhysRevLett.97.035504).
    2. 2)
      • 7. Detsi, E., Vuković, Z., Punzhin, S., et al: ‘Fine-tuning the feature size of nanoporous silver’, Cryst. Eng. Comm., 2012, 14, pp. 54025406 (doi: 10.1039/c2ce25313e).
    3. 3)
      • 11. Sun, Y., Balk, T.: ‘A multi-step dealloying method to produce nanoporous gold with no volume change and minimal cracking’, Scr. Mater., 2008, 58, pp. 727730 (doi: 10.1016/j.scriptamat.2007.12.008).
    4. 4)
      • 13. Jin, H.J., Wang, X.L., Parida, S., Wang, K., Seo, M., Weissmueller, J.: ‘Nanoporous Au-Pt alloys as large strain electrochemical actuators’, Nano Lett., 2010, 10, pp. 187194 (doi: 10.1021/nl903262b).
    5. 5)
      • 8. Li, Z.Q., Lu, X., Qin, Z.X.: ‘Formation of nanoporous silver by dealloying Ag22Zn78 alloy at low temperature in H2SO4’, Int. J. Electrochem. Sci., 2013, 8, pp. 35643571.
    6. 6)
      • 2. You, T., Niwa, O., Tomita, M., Hirono, S.: ‘Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide’, Anal. Chem., 2003, 75, pp. 20802085 (doi: 10.1021/ac026337w).
    7. 7)
      • 1. Bond, G.C., Thompson, D.T.: ‘Catalysis by gold’, Catal. Rev. Sci. Eng., 1999, 41, pp. 319388 (doi: 10.1081/CR-100101171).
    8. 8)
      • 6. Ji, H., Wang, X., Zhoa, C., et al: ‘Formation, control and functionalization of nanoporous silver through changing dealloying media and elemental doping’, Cryst. Eng. Comm., 2011, 13, pp. 26172628 (doi: 10.1039/c0ce00900h).
    9. 9)
      • 3. Joo, S.H., Choi, S.J., Kwa, K.J., Liu, Z.: ‘Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles’, Nature, 2001, 412, pp. 169172 (doi: 10.1038/35084046).
    10. 10)
      • 12. Dursun, A., Pugh, D.V., Corcoran, S.G.: ‘Dealloying of Ag-Au alloys in halide-containing electrolytes’, J. Electrochem. Soc., 2003, 150, pp. B355B360 (doi: 10.1149/1.1580824).
    11. 11)
      • 10. Qian, L., Chen, M.: ‘Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation’, Appl. Phys. Lett., 2007, 91, p. 083105 (doi: 10.1063/1.2773757).
    12. 12)
      • 5. Li, Z.Q., Wang, D.Y., Li, B.Q., Lu, X.: ‘The dealloying kinetics of Ag25Zn75 in 0.1 M H2SO4’, J. Electrochem. Soc., 2010, 157, pp. K223K226 (doi: 10.1149/1.3481429).
    13. 13)
      • 4. Jia, F.L., Yu, C.F., Deng, K.J., Zhang, L.Z.: ‘Nanoporous metal (Cu, Ag, Au) films with high surface area: general fabrication and preliminary electrochemical performance’, J. Phys. Chem. C., 2007, 111, pp. 84248231 (doi: 10.1021/jp071815y).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0567
Loading

Related content

content/journals/10.1049/mnl.2013.0567
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading