Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimisation of quality-factor for in-plane free-free nanoelectromechanical resonators

The performance of nanoelectromechanical (NEM) resonators is destructively affected by mechanical damping that requires more careful designs of the resonators, along with the improvement of their working environments to be overcome. In this Letter, various sources of damping are studied theoretically for the in-plane clamped-clamped (CC) NEM resonator and compared with the equivalent values for the designed alternative free-free (FF) resonator. The in-plane FF NEM resonator shows higher quality factor compared with its CC counterpart, that is about four orders of magnitude higher for the vacuum- and low temperature-working environments and a six times larger value for the working environment of air and room temperature based on the numerical results. The successful fabrication of the FF NEM resonator proves the feasibility of fabrication for the structure with the presented design. The authors show that by optimising the position of the support beams of the FF NEM resonator, the anchor dissipation, that is, the main restrictive source on the total quality factor for the vacuum- and low temperature-working environments, is minimised to its smallest value.

References

    1. 1)
      • 2. Cole, G.D., Wilson-Rae, I., Werbach, K., Vanner, M.R., Aspelmeyer, M.: ‘Phonon-tunnelling dissipation in mechanical resonators’, Nat. Commun., 2011, 2, pp. 18.
    2. 2)
      • 14. Wilson-Rae, I.: ‘Intrinsic dissipation in nanomechanical resonators due to phonon tunneling’, Phys. Rev. B, 2008, 77, pp. 245418:1245418:32.
    3. 3)
      • 15. Stemme, G.: ‘Resonant silicon sensors’, J. Micromech. Microeng., 1991, 1, pp. 113125 (doi: 10.1088/0960-1317/1/2/004).
    4. 4)
      • 18. CoventorWare. Available at: http://www.coventor.com/products/coventorware/.
    5. 5)
      • 4. Al Khusheiny, M., Majlis, B.: ‘Aluminum based two-port-clamped-clamped resonators’. Proc. of IEEE Int. Conf. on Semiconductor Electronics, Kuala Lumpur, 2006, pp. 188192.
    6. 6)
      • 3. Clenland, A.N., Roukes, M.L.: ‘Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals’, Appl. Phys. Lett., 1996, 69, pp. 26532655 (doi: 10.1063/1.117548).
    7. 7)
      • 16. Hsu, W.-T., Clark, J.R., Nguyen, C.T.C.: ‘Q-optimized lateral free-free beam micromechanical resonators’. Digest of Technical Papers. 11th Int. Conf. on Solid-State Sensors and Actuators, Munich, 2001, pp. 11101113.
    8. 8)
      • 11. Veijola, T., Kuisma, H., Lahdenpera, J., Ryhanen, T.: ‘Equivalent-circuit model of the squeezed gas film in a silicon accelerometer’, Sens. Actuators A, Phys., 1995, 48, pp. 239248 (doi: 10.1016/0924-4247(95)00995-7).
    9. 9)
      • 12. Lifshitz, R., Roukes, M.L.: ‘Thermoelastic damping in micro- and nanomechanical systems’, Phys. Rev. B, 2000, 61, pp. 56005609 (doi: 10.1103/PhysRevB.61.5600).
    10. 10)
      • 2. Cole, G.D., Wilson-Rae, I., Werbach, K., Vanner, M.R., Aspelmeyer, M.: ‘Phonon-tunnelling dissipation in mechanical resonators’, Nat. Commun., 2011, 2, pp. 18 (doi: 10.1038/ncomms1212).
    11. 11)
      • 9. Berny, A.: ‘Substrate effects in squeeze film damping of lateral parallel-plate sensing MEMS structures. Available at: http://www-bsac.eecs.berkeley.edu/~pister/245/project/.
    12. 12)
      • 5. Rao, S.S.: ‘Mechanical vibrations’ (Pearson education, Inc., New Jersy, 2004).
    13. 13)
      • 6. Ekinci, K.L., Huang, X.M., Roukes, M.L.: ‘Ultrasensitive nanoelectromechanical mass detection’, Appl. Phys. Lett., 2004, 84, pp. 44694471 (doi: 10.1063/1.1755417).
    14. 14)
      • 1. Durand, C., Casset, F., Ancey, P., et al: ‘Silicon on nothing MEMS electromechanical resonator’, Microsyst. Technol., 2008, 14, pp. 10271033 (doi: 10.1007/s00542-007-0485-z).
    15. 15)
      • 14. Wilson-Rae, I.: ‘Intrinsic dissipation in nanomechanical resonators due to phonon tunneling’, Phys. Rev. B, 2008, 77, pp. 245418:1245418:32 (doi: 10.1103/PhysRevB.77.245418).
    16. 16)
      • 8. Beeby, S., Ensell, G., Kraft, M., White, N.: ‘Inertial sensors. In MEMS mechanical sensors’ (Artech House, Inc., Norwood, 2004), pp. 173213.
    17. 17)
      • 7. Chouvion, B.: ‘Vibration transmission and support loss in MEMS sensors’. PhD thesis, Nottingham, University of Nottingham, 2010.
    18. 18)
      • 19. Hassani, F.A., Tsuchiya, Y., Mizuta, H.: ‘In-plane resonant nano-electro-mechanical sensors: a comprehensive study on design, fabrication and characterization challenges’, Sensors, 2013, 13, pp. 93649387 (doi: 10.3390/s130709364).
    19. 19)
      • 17. Mastrangeli, M., Nannini, A., Pieri, F.: ‘Equivalent circuit for RF flexural free-free MEMS resonators’, J. Comput. Electron., 2006, 5, pp. 205210 (doi: 10.1007/s10825-006-8845-y).
    20. 20)
      • 10. Brotz, J.: ‘Damping in CMOS-MEMS resonators’. MSc thesis Pittsburgh, Carnegie Mellon University, 2001.
    21. 21)
      • 13. Haoa, Z., Erbil, A., Ayazi, F.: ‘An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations’, Sens. Actuator A, 2003, 109, pp. 156164 (doi: 10.1016/j.sna.2003.09.037).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0548
Loading

Related content

content/journals/10.1049/mnl.2013.0548
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address