access icon free Simplified sol–gel method for synthesis of mesoporous alumina

In the present investigation, a simplified method for the synthesis of mesoporous alumina using a sol–gel strategy is reported. Formation of the mesoporous structure is supported by the results of a Brunauer-Emmett-Teller study. The Fourier transform infrared spectroscopy spectra confirmed its primary characteristic peaks. Elemental analysis and X-ray diffraction revealed the formation of γ-Al2O3, after calcination at 700°C. Particle size and zeta potential were measured to assess the size and the surface charge of the synthesised mesoporous material.

Inspec keywords: infrared spectra; alumina; Fourier transform spectra; X-ray diffraction; nanoparticles; X-ray chemical analysis; nanoporous materials; electrokinetic effects; calcination; particle size; mesoporous materials; sol-gel processing; nanofabrication

Other keywords: Fourier transform infrared spectroscopy; mesoporous alumina; surface charge; sol-gel method; mesoporous structure; elemental analysis; X-ray diffraction; calcination; particle size; Al2O3; BET study; temperature 700 degC; zeta potential; mesoporous material

Subjects: Structure of powders and porous materials; Methods of nanofabrication and processing; Low-dimensional structures: growth, structure and nonelectronic properties; Other heat and thermomechanical treatments; Infrared and Raman spectra in disordered solids (inc. glasses and polymers); Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Electrochemistry and electrophoresis; Optical properties of other inorganic semiconductors and insulators (thin films, low-dimensional and nanoscale structures); Electromagnetic radiation spectrometry (chemical analysis)

References

    1. 1)
      • 25. Yopps, J.A., Fuerstenau, D.W.: ‘The zero point of charge of alpha-alumina’, J. Coll. Sci., 1964, 19, p. 61 (doi: 10.1016/0095-8522(64)90007-8).
    2. 2)
      • 5. Bagshaw, S.A., Pinnavaia, T.J.: ‘Mesoporous alumina molecular sieves’, Angew. Chem. Int. Ed. Eng., 1996, 35, (10), pp. 11021105 (doi: 10.1002/anie.199611021).
    3. 3)
      • 12. Ramli, Z., Chandren, S.: ‘Effect of templates on the synthesis of organised mesoporous alumina’, Malays. J. Anal. Sci., 2007, 11, (1), pp. 110116.
    4. 4)
      • 7. Nazari, A., Riahi, S., Riahi, S., Shamekhi, S.F., Khademno, A.: ‘Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete’, J. Am. Sci., 2010, 6, (5), pp. 69.
    5. 5)
      • 3. Vaudry, F., Kohdabandeh, S., Davis, M.E.: ‘Synthesis of pure aluminas mesoporous materials’, Chem. Mater., 1996, 8, p. 1451 (doi: 10.1021/cm9600337).
    6. 6)
      • 11. Saber, O.: ‘Novel self assembly behavior for v-alumina nanoparticles’, Particuolog., 2012, 10, (6), pp. 744750 (doi: 10.1016/j.partic.2012.03.008).
    7. 7)
      • 23. Smith, S.J., Amin, S., Woodfield, B.F., Goates, J.B., Campbell, B.J.: ‘The phase progression of γ-Al2O3 nanoparticles synthesized in solvent deficient environment’, Inorg. Chem., 2013, 52, pp. 44114423 (doi: 10.1021/ic302593f).
    8. 8)
      • 6. Kim, C., Kim, Y., Kim, P., Yi, J.: ‘Synthesis of mesoporous alumina by using a cost-effective template’, Korean J. Chem. Eng., 2003, 20, (6), pp. 11421144 (doi: 10.1007/BF02706951).
    9. 9)
      • 2. Liu, C., Liu, Y., Ma, Q., He, H.: ‘Mesoporous transition alumina with uniform pore structure synthesized by alumisol spray pyrolysis’, Chem. Eng. J., 2010, 163, (1–2), pp. 133142 (doi: 10.1016/j.cej.2010.07.046).
    10. 10)
      • 17. Patra, A.K., Dutta, A., Bhaumik, A.: ‘Self assembled Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water’, J. Hazard. Mater., 2012, 201, pp. 170177 (doi: 10.1016/j.jhazmat.2011.11.056).
    11. 11)
      • 14. Kim, J.H., Jung, K.Y., Park, K.Y.: ‘Effect of urea, NH4OH and DCCA on texture properties of alumina prepared by ultrasonic spray pyrolysis’, J. Ind. Eng. Chem., 2012, 18, (1), pp. 344348 (doi: 10.1016/j.jiec.2011.04.001).
    12. 12)
      • 19. Zhang, X., Zhanga, F., Chan, K.Y.: ‘The synthesis of large mesopores alumina by microemulsion templating, their characterization and properties as catalyst support’, Mater. Lett., 2004, 58, pp. 28722877 (doi: 10.1016/j.matlet.2004.05.008).
    13. 13)
      • 24. Wu, Q.: ‘Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure’, Micropor. Mesopor. Mater., 2011, 143, (2–3), pp. 406412 (doi: 10.1016/j.micromeso.2011.03.033).
    14. 14)
      • 20. Ward, D.A., Ko, E.I.: ‘Preparing catalytic materials by the sol–gel method’, Ind. Eng. Chem. Res., 1996, 34, p. 421 (doi: 10.1021/ie00041a001).
    15. 15)
      • 13. Naik, B., Ghosh, N.N.: ‘A review on chemical methodologies for preparation of mesoporous silica and alumina based materials’, Recent Patents Nanotechnol., 2009, 3, pp. 213224 (doi: 10.2174/187221009789177768).
    16. 16)
      • 21. Ecsedi, Z., Lazau, I., Pacurariu, C.: ‘Synthesis of mesoporous alumina using polyvinyl alcohol template as porosity control additive’, Process. Appl. Ceramics, 2007, 1, (1–2), p. 5 (doi: 10.2298/PAC0702005E).
    17. 17)
      • 10. Kapoor, S., Hegde, R., Bhattacharyya, A.J.: ‘Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release’, J. Control. Release, 2009, 140, pp. 3439 (doi: 10.1016/j.jconrel.2009.07.015).
    18. 18)
      • 4. Yada, M., Machida, M., Kijima, T.: ‘Synthesis and deorganization of an aluminium-based dodecyl sulfate mesophase with hexagonal structure’, Chem. Commun., 1996, 6, p. 769 (doi: 10.1039/cc9960000769).
    19. 19)
      • 22. Kim, Y., Kim, C., Kim, P., Yi, J.: ‘Effect of preparation conditions on the phase transformation of mesoporous alumina’, J. Non-Cryst. Solids, 2005, 351, (6–7), pp. 550556 (doi: 10.1016/j.jnoncrysol.2005.01.009).
    20. 20)
      • 16. Yue, M.B., Xue, T., Jiao, W.Q., Wang, Y.M., He, M.Y.: ‘CTAB-directed synthesis of mesoporous γ-alumina promoted by hydroxyl carboxylate; the interplay of tartrate and CTAB’, Solid State Sci., 2011, 13, (2), pp. 409416 (doi: 10.1016/j.solidstatesciences.2010.12.003).
    21. 21)
      • 18. Suresh, K., Selvarajan, V., Vijay, M.: ‘Synthesis of nanophase alumina, and spheroidization of alumina particles, and phase transition studies through DC thermal plasma processing’, Vacuum, 2008, 82, (8), pp. 814820 (doi: 10.1016/j.vacuum.2007.11.008).
    22. 22)
      • 8. Cejka, J.: ‘Organised mesoporous alumina: synthesis, structure and potential in catalysis’, Appl. Catal. A-Gen., 2003, 254, (12), pp. 327338 (doi: 10.1016/S0926-860X(03)00478-2).
    23. 23)
      • 15. Jeyaprakash, B.G., Ashok kumar, R., Kesavan, K., Amalarani, A.: ‘Structural and optical characterization of spray deposited SnS thin film’, J. Am. Sci., 2012, 6, (3), pp. 2226.
    24. 24)
      • 1. Fadeel, B., Garcia-Bennett, A.E.: ‘Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications’, Adv. Drug Deliv. Rev., 2010, 62, (3), pp. 362374 (doi: 10.1016/j.addr.2009.11.008).
    25. 25)
      • 9. Das, S.K., Kapoor, S., Yamada, H., Bhattacharyya, A.J.: ‘Effects of surface acidity and pore size of mesoporous alumina on degree of loading and controlled release of ibuprofen’, Micropor. Mesopor. Mater., 2009, 118, pp. 267272 (doi: 10.1016/j.micromeso.2008.08.042).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0535
Loading

Related content

content/journals/10.1049/mnl.2013.0535
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading