http://iet.metastore.ingenta.com
1887

Anisotropic sliding of multiple-level biomimetic rice-leaf surfaces on aluminium substrates

Anisotropic sliding of multiple-level biomimetic rice-leaf surfaces on aluminium substrates

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The realisation of special anisotropic sliding behaviour of liquids on metal substrates is very important for applications in fluidic control and water directional transportation. Proposed is a method combining lithography assisted electrochemical etching, anodic oxidation and fluoridation to construct the three-level microstructures (macro/micro/nano) of rice leaves on aluminium. Similar to the natural rice leaf, the prepared surface was endowed with multiple-level microstructures and exhibits superhydrophobicity. The measurements show the biomimetic rice-leaf surface has different anisotropic sliding behaviour with water droplets of different volumes. The perpendicular and parallel sliding angles (SAs) of a 4 μl water droplet were 6.8° and 2.7°, respectively, the anisotropy was 4.1°, which is comparable to that of a natural rice leaf. A mathematical model is presented to explain the mutational significant anisotropy of SAs (10.2°) when the water droplet was only 2 μl. This method is simple and economical, and is believed can be used for the fabrication of large-area biomimetic rice-leaf surfaces on metal.

References

    1. 1)
      • 1. Barthlott, W., Neinhuis, C.: ‘Purity of the sacred lotus, or escape from contamination in biological surfaces’, Planta, 1997, 202, pp. 18 (doi: 10.1007/s004250050096).
    2. 2)
      • 2. Guo, Z.G., Liu, W.M.: ‘Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure’, Plant Sci., 2007, 172, pp. 11031112 (doi: 10.1016/j.plantsci.2007.03.005).
    3. 3)
      • 3. Gao, X., Jiang, L.: ‘Biophysics: water-repellent legs of water striders’, Nature, 2004, 432, (7013), p. 36 (doi: 10.1038/432036a).
    4. 4)
      • 4. Chou, S.Y., Krauss, P.R., Zhang, W., et al: ‘Sub-10 nm imprint lithography and applications’, J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct., 1997, 15, (6), pp. 28972904 (doi: 10.1116/1.589752).
    5. 5)
      • 5. Chou, S.Y., Keimel, C., Gu, J.: ‘Ultrafast and direct imprint of nanostructures in silicon’, Nature, 2002, 417, (6891), pp. 835837 (doi: 10.1038/nature00792).
    6. 6)
      • 6. Yuan, Z., Chen, H., Tang, J., et al: ‘A novel preparation of polystyrene film with a superhydrophobic surface using a template method’, J. Phys. D, Appl. Phys., 2007, 40, (11), p. 3485 (doi: 10.1088/0022-3727/40/11/033).
    7. 7)
      • 7. Wu, D., Chen, Q.D., Xia, H., et al: ‘A facile approach for artificial bio-mimetic surfaces with both superhydrophobicity and iridescence’, Soft Matter, 2010, 6, pp. 263267 (doi: 10.1039/b910605g).
    8. 8)
      • 8. Song, J.L., Xu, W.J., Lu, Y., et al: ‘Rapid fabrication of superhydrophobic surfaces on copper substrates by electrochemical machining’, Appl. Surf. Sci., 2011, 257, (24), pp. 1091010916 (doi: 10.1016/j.apsusc.2011.07.140).
    9. 9)
      • 9. Song, J.L., Xu, W.J., Lu, Y.: ‘One-step electrochemical machining of superhydrophobic surfaces on Al substrates’, J. Mater. Sci., 2012, 47, (1), pp. 162168 (doi: 10.1007/s10853-011-5783-2).
    10. 10)
      • 10. Lu, Y., Song, J.L., Liu, X., et al: ‘Preparation of superoleophobic and superhydrophobic titanium surfaces via an environmentally friendly electrochemical etching method’, ACS Sustain. Chem. Eng., 2012, 1, (1), pp. 102109.
    11. 11)
      • 11. Lu, Y., Song, J.L., Liu, X., et al: ‘Loading capacity of a self-assembled superhydrophobic boat array fabricated via electrochemical method’, Micro Nano Lett., 2012, 7, (8), pp. 786789 (doi: 10.1049/mnl.2012.0435).
    12. 12)
      • 12. Xu, X., Zhang, Z., Yang, J.: ‘Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method’, Langmuir, 2009, 26, (5), pp. 36543658 (doi: 10.1021/la9031128).
    13. 13)
      • 13. Momen, G., Farzaneh, M.: ‘Simple process to fabricate a superhydrophobic coating’, Micro Nano Lett., 2011, 6, (6), pp. 405407 (doi: 10.1049/mnl.2011.0222).
    14. 14)
      • 14. Shibuichi, S., Yamamoto, T., Onda, T., et al: ‘Super water-and oil-repellent surfaces resulting from fractal structure’, J. Colloid Interface sci., 1998, 208, (1), pp. 287294 (doi: 10.1006/jcis.1998.5813).
    15. 15)
      • 15. Mateo, J.N., Kulkarni, S.S., Das, L., et al: ‘Wetting behavior of polymer coated nanoporous anodic alumina films: transition from super-hydrophilicity to super-hydrophobicity’, Nanotechnology, 2011, 22, (3), p. 035703 (doi: 10.1088/0957-4484/22/3/035703).
    16. 16)
      • 16. Wu, D., Wang, J.N., Wu, S.Z., et al: ‘Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding’, Adv. Funct. Mater., 2011, 21, (15), pp. 29272932 (doi: 10.1002/adfm.201002733).
    17. 17)
      • 17. Gau, H., Herminghaus, S., Lenz, P., et al: ‘Liquid morphologies on structured surfaces: from microchannels to microchips’, Science, 1999, 283, (5398), pp. 4649 (doi: 10.1126/science.283.5398.46).
    18. 18)
      • 18. Zhao, B., Moore, J.S., Beebe, D.J.: ‘Surface-directed liquid flow inside microchannels’, Science, 2001, 291, (5506), pp. 10231026 (doi: 10.1126/science.291.5506.1023).
    19. 19)
      • 19. Higgins, A.M., Jones, R.A.L.: ‘Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces’, Nature, 2000, 404, (6777), pp. 476478 (doi: 10.1038/35006597).
    20. 20)
      • 20. Morita, M., Koga, T., Otsuka, H., et al: ‘Macroscopic-wetting anisotropy on the line-patterned surface of fluoroalkylsilane monolayers’, Langmuir, 2005, 21, (3), pp. 911918 (doi: 10.1021/la0485172).
    21. 21)
      • 21. Sommers, A.D., Jacobi, A.M.: ‘Creating micro-scale surface topology to achieve anisotropic wettability on an Al surface’, J. Micromechan. Microeng., 2006, 16, (8), p. 1571 (doi: 10.1088/0960-1317/16/8/018).
    22. 22)
      • 22. Chung, J.Y., Youngblood, J.P., Stafford, C.M.: ‘Anisotropic wetting on tunable micro-wrinkled surfaces’, Soft Matter., 2007, 3, (9), pp. 11631169 (doi: 10.1039/b705112c).
    23. 23)
      • 23. Lee, S.G., Lim, H.S., Lee, D.Y., et al: ‘Tunable anisotropic wettability of rice leaf-like wavy surfaces’, Adv. Funct. Mater., 2012, pp. 547553.
    24. 24)
      • 24. Wu, H., Zhang, R., Sun, Y., et al: ‘Biomimetic nanofiber patterns with controlled wettability’, Soft Matter, 2008, 4, (12), pp. 24292433 (doi: 10.1039/b805570j).
    25. 25)
      • 25. Yao, J., Wang, J.N., Yu, Y.H., et al: ‘Biomimetic fabrication and characterization of an artificial rice leaf surface with anisotropic wetting’, Chin. Sci. Bull., 2012, 57, (20), pp. 26312634 (doi: 10.1007/s11434-012-5220-1).
    26. 26)
      • 26. Zhao, Y., Lu, Q., Li, M., et al: ‘Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface’, Langmuir, 2007, 23, (11), pp. 62126217 (doi: 10.1021/la0702077).
    27. 27)
      • 27. Xia, D., Brueck, S.R.J.: ‘Strongly anisotropic wetting on one-dimensional nanopatterned surfaces’, Nano Lett., 2008, 8, (9), pp. 28192824 (doi: 10.1021/nl801394w).
    28. 28)
      • 28. Furmidge, C.G.L.: ‘Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention’, J. Colloid Sci., 1962, 17, (4), pp. 309324 (doi: 10.1016/0095-8522(62)90011-9).
    29. 29)
      • 29. Yoshimitsu, Z., Nakajima, A., Watanabe, T., et al: ‘Effects of surface structure on the hydrophobicity and sliding behavior of water droplets’, Langmuir, 2002, 18, (15), pp. 58185822 (doi: 10.1021/la020088p).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0531
Loading

Related content

content/journals/10.1049/mnl.2013.0531
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address