access icon free Ultrathin α-Mg2V2O7 nanosheets: controllable fabrication and their formation mechanism

Alpha-magnesium vanadate [(α)-Mg2V2O7] nanosheets with a uniform diameter and thickness were obtained by a simple hydrothermal method. The characterisations of the as-synthesised samples were carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy/high-resolution transmission electron microscopy technology. The reaction time is systematically altered to tune the rational growth direction for a sheet-like shape. On the basis of the parallel experiments, a ‘dissolution-recrystallisation’ mechanism is proposed, which is also beneficial for developing novel functional nanostructures of other alkaline vanadates.

Inspec keywords: nanofabrication; nanostructured materials; transmission electron microscopy; sheet materials; recrystallisation; magnesium compounds; scanning electron microscopy; dissolving; X-ray diffraction

Other keywords: alkaline vanadates; novel functional nanostructures; dissolution-recrystallisation; alpha-magnesium vanadate ultrathin nanosheets; X-ray diffraction; high-resolution transmission electron microscopy; simple hydrothermal method; scanning electron microscopy; Mg2V2O7

Subjects: Methods of nanofabrication and processing; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Solubility, segregation, and mixing; Cold working, work hardening; post-deformation annealing, recovery and recrystallisation; textures

References

    1. 1)
      • 1. Gopal, R., Calvo, C.: ‘Crystal-structure of magnesium divanadate, Mg2V2O7’, Acta Crystallogr. B, Struct. Sci., 1974, 30, pp. 24912493 (doi: 10.1107/S0567740874007400).
    2. 2)
      • 21. Kuai, L., Geng, B.Y., Wang, S.Z., Zhao, Y.Y., Luo, Y.C., Jiang, H.: ‘Silver and gold icosahedra: one-pot water-based synthesis and their superior performance in the electrocatalysis for oxygen reduction reactions in alkaline media’, Chem. Eur. J., 2011, 17, pp. 34823489 (doi: 10.1002/chem.201002949).
    3. 3)
      • 2. Chang, W.S., Chen, Y.Z., Yang, B.L.: ‘Oxidative dehydrogenation of ethylbenzene over VIV and VV magnesium vanadates’, Appl. Catal. A-Gen., 1995, 124, pp. 221243 (doi: 10.1016/0926-860X(94)00253-3).
    4. 4)
      • 27. Wang, L.N., Sun, Y., Li, C.S., et al: ‘Morphology-controlled CaMoO4 nanorods via a facile microwave-assisted EDTA chelating agent process’, Cryst. Res. Technol., 2012, 47, (12), pp. 12311237 (doi: 10.1002/crat.201200148).
    5. 5)
      • 18. Wu, S.J., Lu, W.J., Kang, Q., Shen, D.Z., Pan, D.W.: ‘Site synthesis of bismuth nanoparticles for electrochemical determination of lead’, Micro Nano Lett., 2012, 7, (12), pp. 12601263 (doi: 10.1049/mnl.2012.0768).
    6. 6)
      • 7. Holgado, M.J., Labajos, F.M., Montero, M.J.S., Rives, V.: ‘Thermal decomposition of Mg/V hydrotalcites and catalytic performance of the products in oxidative dehydrogenation reactions’, Mater. Res. Bull., 2003, 38, pp. 18791891 (doi: 10.1016/j.materresbull.2003.07.012).
    7. 7)
      • 24. Sun, Y., Li, C.S., Wang, L.N., et al: ‘Synthesis of SrMoO4 microstructures by the microwave radiation assisted chelating agent method’, Cryst. Res. Technol., 2011, 46, (9), pp. 973978.
    8. 8)
      • 6. Belomestnykh, I.P., Isaguliants, G.V.: ‘V–Mg–O catalysts for oxidative dehydrogenation of alkylpyridines and alkylthiophenes’, Catal. Today, 2009, 142, pp. 192195 (doi: 10.1016/j.cattod.2008.12.001).
    9. 9)
      • 4. Sugiyama, S., Hirata, Y., Nakagawa, K., et al: ‘Application of the unique redox properties of magnesium ortho-vanadate incorporated with palladium in the unsteady-state operation of the oxidative dehydrogenation of propane’, J. Catal., 2008, 260, pp. 157163 (doi: 10.1016/j.jcat.2008.09.015).
    10. 10)
      • 11. Novák, P., Scheifele, W., Haas, O.: ‘Magnesium insertion batteries – an alternative to lithium?’, J. Power Sources, 1995, 54, pp. 479482 (doi: 10.1016/0378-7753(94)02129-Q).
    11. 11)
      • 3. Carrazán, S.R.G., Peres, C., Bernard, J.P., Ruwet, M., Ruiz, P., Delmon, B.: ‘Catalytic energy in the oxidative hydrogenation of propane over MgVO catalysts’, J. Catal., 1996, 158, pp. 452476 (doi: 10.1006/jcat.1996.0046).
    12. 12)
      • 8. Holgado, M.J., Román, S.S., Malet, P., Rives, V.: ‘Effect of the preparation method on the physicochemical properties of mixed magnesium–vanadium oxides’, Mater. Chem. Phys., 2005, 89, pp. 4955 (doi: 10.1016/j.matchemphys.2004.08.022).
    13. 13)
      • 19. Sun, Y., Li, C.S., Ma, X.G., et al: ‘The morphology-controlled synthesis of monoclinic-CaV2O6 nanoribbons via hydrothermal method’, Nanosci. Nanotechnol. Lett., 2013, 5, pp. 408412 (doi: 10.1166/nnl.2013.1546).
    14. 14)
      • 17. Takei, S.: ‘Nanoimprinting of TiO2–SiO2 photocurable materials with high titanium concentration for CF4/O2 etch selectivity’, Micro Nano Lett., 2013, 8, (1), pp. 14 (doi: 10.1049/mnl.2012.0911).
    15. 15)
      • 15. Chen, J., Liu, X., Su, Z.X.: ‘Facile synthesis and characterisation of dandelion-like V2O3 core–shell microspheres’, Micro Nano Lett., 2011, 6, (3), pp. 102105 (doi: 10.1049/mnl.2010.0207).
    16. 16)
      • 12. Michailovski, A., Wörle, M., Sheptyakov, D., Patzke, G.R.: ‘Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates’, J. Mater. Res., 2007, 22, pp. 518 (doi: 10.1557/jmr.2007.0002).
    17. 17)
      • 14. Zhang, Y.F., Fan, M.J., Niu, F., et al: ‘Hydrothermal synthesis of VO2(A) nanobelts and their phase transition and optical switching properties’, Micro Nano Lett., 2011, 6, (11), pp. 888891 (doi: 10.1049/mnl.2011.0463).
    18. 18)
      • 20. Koichi, U., Shinei, K., Yasuhiro, J., Naoaki, K.: ‘Preparation of Co–Sn alloy film as negative electrode for lithium secondary batteries by pulse electrodeposition method’, J. Power Sources, 2011, 196, pp. 39163920 (doi: 10.1016/j.jpowsour.2010.12.002).
    19. 19)
      • 23. Sun, Y., Li, C.S., Wang, L.N., et al: ‘Ultra long monoclinic ZnV2O6 nanowires: their shape-controlled synthesis, new growth mechanism, and highly reversible lithium storage in lithium-ion batteries’, RSC Adv., 2012, 2, pp. 81108115 (doi: 10.1039/c2ra20825c).
    20. 20)
      • 9. Lee, H., Lee, J.K., Hong, U.G., et al: ‘Effect of oxygen capacity and oxygen mobility of supported Mg3(VO4)2 catalysts on the performance in the oxidative dehydrogenation of n-butane’, J. Ind. Eng. Chem., 2012, 18, pp. 808813 (doi: 10.1016/j.jiec.2011.10.006).
    21. 21)
      • 25. Sun, Y., Li, C.S., Zhang, Z.J., et al: ‘Persimmon-like CaMoO4 micro/nanomaterials: a rapid microwave-assisted fabrication, characterization, and the growth mechanism’, Solid State Sci., 2012, 14, pp. 219224 (doi: 10.1016/j.solidstatesciences.2011.11.015).
    22. 22)
      • 13. Ruckenstein, E., Chao, Z.S.: ‘Synthesis of mesoporous V-Mg-O nanofibers’, Nano Lett., 2001, 1, pp. 739742 (doi: 10.1021/nl015634y).
    23. 23)
      • 5. Jin, M., Cheng, Z.M., Gao, Y.L., Fang, X.C.: ‘Oxidative dehydrogenation of cyclohexane with Mg3(VO4)2 synthesized by the citrate process’, Mater. Lett., 2009, 63, pp. 20552058 (doi: 10.1016/j.matlet.2009.06.054).
    24. 24)
      • 26. Zhang, S.Y., Sun, Y., Li, C.S., Hu, R.S.: ‘Rational synthesis of copper vanadates/polypyrrole nanowires with enhanced electrochemical property’, Mater. Lett., 2013, 91, pp. 154157 (doi: 10.1016/j.matlet.2012.09.113).
    25. 25)
      • 10. Rozier, M., Combes, J., Galy, J.: ‘NiV3O8 single crystal structure determination and comparison with polymorphic forms of ZnV3O8 and MgV3O8’, Phys. Chem. Solids, 2001, 62, pp. 14011408 (doi: 10.1016/S0022-3697(01)00055-5).
    26. 26)
      • 16. Zhang, Y.F., Zhang, J.H., Nie, J.R., Zhong, Y.L., Liu, X.H., Huang, C.: ‘Facile synthesis of V2O3/C composite and the effect of V2O3 and V2O3/C on decomposition of ammonium perchlorate’, Micro Nano Lett., 2012, 7, (8), pp. 782785 (doi: 10.1049/mnl.2012.0422).
    27. 27)
      • 22. Ren, T.Z., Yuan, Z.Y., Su, B.L.: ‘Thermally stable macroporous zirconium phosphates with supermicroporous walls: a self-formation phenomenon of hierarchy’, Chem. Commun., 2004, 23, pp. 27302731 (doi: 10.1039/b410763b).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0523
Loading

Related content

content/journals/10.1049/mnl.2013.0523
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading