access icon free Surfactant-assisted hydrothermal preparation of monoclinic bismuth vanadate microspheres and visible-light-driven photocatalytic activity

Beautiful monoclinic bismuth vanadate (BiVO4) microspheres have been fabricated by using the sodium dodecyl sulphate (SDS) assisted hydrothermal strategy with bismuth nitrate and ammonium metavanadate as a metal source. The physicochemical properties of the materials were characterised by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller and UV–vis techniques. The photocatalytic activities of the as-fabricated BiVO4 microspheres were measured for the photodegradation of methylene blue under visible-light irradiation. The effects of SDS on the synthesis of BiVO4 microspheres were investigated. Comparison experiments were conducted and showed that the amount of SDS significantly influences the morphology of the products. The possible formation mechanism of such BiVO4 microsphere material is also discussed.

Inspec keywords: crystal microstructure; crystal growth from solution; photochemistry; X-ray diffraction; ultraviolet spectra; transmission electron microscopy; catalysis; surfactants; scanning electron microscopy; visible spectra; dyes; bismuth compounds; crystal morphology

Other keywords: X-ray diffraction; visible-light-driven photocatalytic activity; surfactant-assisted hydrothermal preparation; physicochemical properties; morphology; BiVO4; Brunauer-Emmett-Teller method; photodegradation; monoclinic bismuth vanadate microspheres; ultraviolet-visible spectra; metal source; transmission electron microscopy; sodium dodecyl sulfate assisted hydrothermal strategy; visible-light irradiation; bismuth nitrate; scanning electron microscopy; ammonium metavanadate; methylene blue

Subjects: Photochemistry and radiation chemistry; Heterogeneous catalysis at surfaces and other surface reactions; Microstructure; Crystal growth from solution; Crystal structure of specific inorganic compounds; Crystal morphology and orientation

References

    1. 1)
      • 3. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: ‘Visible-light photocatalysis in nitrogen-doped titanium oxides’, Science, 2001, 293, (5528), pp. 269271 (doi: 10.1126/science.1061051).
    2. 2)
      • 1. Chen, C., Zhao, W., Li, J., Zhao, J., Hidaka, H., Serpone, N.: ‘Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous TiO2 dispersion’, Environ. Sci. Technol., 2002, 36, (16), pp. 36043611 (doi: 10.1021/es0205434).
    3. 3)
      • 12. Li, H., Liu, G., Duan, X.: ‘Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties’, Mater. Chem. Phys., 2009, 115, (1), pp. 913 (doi: 10.1016/j.matchemphys.2009.01.014).
    4. 4)
      • 28. Wang, X., Yu, J.C., Ho, C., Hou, Y., Fu, X.: ‘Photocatalytic activity of a hierarchically macro/mesoporous titania’, Langmuir, 2005, 21, (6), pp. 25522559 (doi: 10.1021/la047979c).
    5. 5)
      • 27. Zhang, L., Yu, J.C.: ‘A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity’, Chem. Commun., 2003, 16, pp. 20782079 (doi: 10.1039/b306013f).
    6. 6)
      • 16. Ae Ran, L., Sung Ho, C., Min Su, J.: ‘Prominent ferroelastic domain walls in BiVO4 crystal’, J. Phys., Condens. Matter, 1995, 7, (37), p. 7309 (doi: 10.1088/0953-8984/7/37/005).
    7. 7)
      • 21. Yoshimura, M., Sōmiya, S.: ‘Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia’, Mater. Chem. Phys., 1999, 61, (1), pp. 18 (doi: 10.1016/S0254-0584(99)00104-2).
    8. 8)
      • 7. Li, M., Zhao, L., Guo, L.: ‘Preparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysis’, Int. J. Hydrog. Energy, 2010, 35, (13), pp. 71277133 (doi: 10.1016/j.ijhydene.2010.02.026).
    9. 9)
      • 6. Kohtani, S., Koshiko, M., Kudo, A., et al: ‘Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator’, Appl. Catal. B, Environ., 2003, 46, (3), pp. 573586 (doi: 10.1016/S0926-3373(03)00320-5).
    10. 10)
      • 17. Tokunaga, S., Kato, H., Kudo, A.: ‘Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties’, Chem. Mater., 2001, 13, (12), pp. 46244628 (doi: 10.1021/cm0103390).
    11. 11)
      • 2. Cong, Y., Zhang, J., Chen, F., Anpo, M.: ‘Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity’, J. Phys. Chem. C, 2007, 111, (19), pp. 69766982 (doi: 10.1021/jp0685030).
    12. 12)
      • 19. Liu, J.-B., Wang, H., Wang, S., Yan, H.: ‘Hydrothermal preparation of BiVO4 powders’, Mater. Sci. Eng. B, 2003, 104, (1–2), pp. 3639 (doi: 10.1016/S0921-5107(03)00264-2).
    13. 13)
      • 5. Kohtani, S., Tomohiro, M., Tokumura, K., Nakagaki, R.: ‘Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts’, Appl. Catal. B, Environ., 2005, 58, (3–4), pp. 265272 (doi: 10.1016/j.apcatb.2004.12.007).
    14. 14)
      • 30. Yu, J.G., Su, Y.R., Cheng, B.: ‘Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania’, Adv. Funct. Mater., 2007, 17, (12), pp. 19841990 (doi: 10.1002/adfm.200600933).
    15. 15)
      • 20. Galembeck, A., Alves, O.L.: ‘BiVO4 thin film preparation by metalorganic decomposition’, Thin Solid Films, 2000, 365, (1), pp. 9093 (doi: 10.1016/S0040-6090(99)01079-2).
    16. 16)
      • 14. Zhou, Y., Vuille, K., Heel, A., Probst, B., Kontic, R., Patzke, G.R.: ‘An inorganic hydrothermal route to photocatalytically active bismuth vanadate’, Appl. Catal. A, General, 2010, 375, (1), pp. 140148 (doi: 10.1016/j.apcata.2009.12.031).
    17. 17)
      • 9. Yin, W.Z., Wang, W.Z., Shang, M., Zhou, L., Sun, S.M., Wang, L.: ‘BiVO4 hollow nanospheres: anchoring synthesis, growth mechanism, and their application in photocatalysis’, Eur. J. Inorganic Chem., 2009, 29–30, pp. 43794384 (doi: 10.1002/ejic.200900614).
    18. 18)
      • 18. Roth, R., Waring, J.: ‘Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO 4 compounds’, Am. Mineral, 1963, 48, pp. 13481356.
    19. 19)
      • 24. Kudo, A., Tsuji, I., Kato, H.: ‘AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation’, Chem. Commun., 2002, 0, (17), pp. 19581959 (doi: 10.1039/b204259b).
    20. 20)
      • 25. Butler, M.A.: ‘Photoelectrolysis and physical properties of the semiconducting electrode WO3’, J. Appl. Phys., 1977, 48, (5), pp. 19141920 (doi: 10.1063/1.323948).
    21. 21)
      • 11. Li, G., Zhang, D., Yu, J.C.: ‘Ordered mesoporous BiVO4 through nanocasting: a superior visible light-driven photocatalyst’, Chem. Mater., 2008, 20, (12), pp. 39833992 (doi: 10.1021/cm800236z).
    22. 22)
      • 13. Zhang, L., Chen, D., Jiao, X.: ‘Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties’, J. Phys. Chem. B, 2006, 110, (6), pp. 26682673 (doi: 10.1021/jp056367d).
    23. 23)
      • 31. Yu, J., Zhang, L., Cheng, B., Su, Y.: ‘Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania’, J. Phys. Chem. C, 2007, 111, (28), pp. 1058210589 (doi: 10.1021/jp0707889).
    24. 24)
      • 4. Zhao, W., Ma, W., Chen, C., Zhao, J., Shuai, Z.: ‘Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation’, J. Am. Chem. Soc., 2004, 126, (15), pp. 47824783 (doi: 10.1021/ja0396753).
    25. 25)
      • 29. Yu, J., Zhao, X., Zhao, Q.: ‘Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method’, Thin Solid Films, 2000, 379, (1–2), pp. 714 (doi: 10.1016/S0040-6090(00)01542-X).
    26. 26)
      • 10. Kohtani, S., Makino, S., Kudo, A., et al: ‘Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator: comparison between BiVO4 and TiO2 photocatalysts’, Chem. Lett., 2002, 31, (7), pp. 660661 (doi: 10.1246/cl.2002.660).
    27. 27)
      • 23. Li, Y., Liu, J., Huang, X.: ‘Synthesis and visible-light photocatalytic property of Bi2WO6 hierarchical octahedron-like structures’, Nanoscale Res. Lett., 2008, 3, (10), pp. 365371 (doi: 10.1007/s11671-008-9168-7).
    28. 28)
      • 22. Yu, J., Xiong, J., Cheng, B., Liu, S.: ‘Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity’, Appl. Cat. B: Environ., 2005, 60, (3–4), pp. 211221 (doi: 10.1016/j.apcatb.2005.03.009).
    29. 29)
      • 15. Castillo, N.C., Heel, A., Graule, T., Pulgarin, C.: ‘Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity’, Appl. Catal. B, Environ., 2010, 95, (3–4), pp. 335347 (doi: 10.1016/j.apcatb.2010.01.012).
    30. 30)
      • 8. Zhao, Y., Xie, Y., Zhu, X., Yan, S., Wang, S.: ‘Surfactant-free synthesis of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis, gas sensing, and lithium-ion batteries’, Chem.: A Eur. J., 2008, 14, (5), pp. 16011606 (doi: 10.1002/chem.200701053).
    31. 31)
      • 26. Kudo, A., Omori, K., Kato, H.: ‘A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties’, J. Am. Chem. Soc., 1999, 121, (49), pp. 1145911467 (doi: 10.1021/ja992541y).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0492
Loading

Related content

content/journals/10.1049/mnl.2013.0492
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading