Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Electrochemical activation of substrate surfaces in microelectroforming

Microelectroforming is a modern manufacturing process for producing metal microstructures in the field of microelectronic mechanical systems. Electrochemical activation of the substrate surfaces can enhance the adhesion strength between the electroforming layer and the substrate at the first stage of microelectroforming. The mechanism of current density affecting the activation of the substrate surfaces was explored. The cathodic overpotential was carried out with the chronopotentiometric method under different current density conditions. The current density at the first stage of microelectroforming was the largest contributor to the electrochemical activation of the substrate surfaces. As the current density was set in the range of 0.2–1.2 A/dm2, effective electrochemical activation occurred on the substrate surfaces. Although the current density was 0.4 A/dm2, the effect of substrate activation is optimal and the adhesion strength between the electroforming layer and the substrate reached its maximum.

References

    1. 1)
      • 14. Jiméneza, H., Gilb, L., Staiac, M.H., Puchi-Cabrera, E.S.: ‘Effect of deposition parameters on adhesion, hardness and wearresistance of Sn–Ni electrolytic coatings’, Surf. Coat. Technol., 2008, 202, pp. 20722079 (doi: 10.1016/j.surfcoat.2007.08.071).
    2. 2)
      • 25. Lee, C.J., Lee, J.M., Kim, B.M.: ‘The adhesion evaluation of thin hard coatings on tool steel with nitride or non-nitride layer using the scratch test’, Mater. Sci. Forum, 2008, 569, pp. 165168 (doi: 10.4028/www.scientific.net/MSF.569.165).
    3. 3)
      • 24. Blees, M.H., Winkelman, G.B., Balkenende, A.R., Toonder, J.M.: ‘The effect of friction on scratch adhesion testing: application to a sol–gel coating on polypropylene’, Thin Solid Films, 2000, 359, pp. 113 (doi: 10.1016/S0040-6090(99)00729-4).
    4. 4)
      • 23. Langier, M.T.: ‘Adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides’, J. Mater. Sci., 1986, 21, pp. 22692272 (doi: 10.1007/BF01114266).
    5. 5)
      • 4. Maleka, C.K., Saile, V.: ‘Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and systems: a review’, Microelectron. J., 2004, 35, pp. 131143 (doi: 10.1016/j.mejo.2003.10.003).
    6. 6)
      • 3. Hart, T., Watson, A.: ‘Plating procedures electroforming’, Met. Finish., 2007, 105, pp. 331341 (doi: 10.1016/S0026-0576(07)80351-5).
    7. 7)
      • 16. Wang, H., Liu, R., Jiang, W.Q., et al: ‘A novel method for improving the adhesion strength of the electrodeposited Ni films in MEMS’, Appl. Surf. Sci., 2011, 257, pp. 22032207 (doi: 10.1016/j.apsusc.2010.09.073).
    8. 8)
      • 21. Tang, J.W., Azumi, K.H.: ‘Influence of zincate pretreatment on adhesion strength of a copper electroplating layer on AZ91 D magnesium alloy’, Surf. Coat. Technol., 2011, 205, pp. 30503057 (doi: 10.1016/j.surfcoat.2010.11.021).
    9. 9)
      • 6. McGeough, J.A., Leu, M.C., Rajurkar, K.P., De Silva, A.K.M., Liu, Q.: ‘Electroforming process and application to micro/macro manufacturing’, CIRP Ann-Manuf. Technol., 2001, 50, pp. 499514 (doi: 10.1016/S0007-8506(07)62990-4).
    10. 10)
      • 20. Birringer, R.P., Shaviv, R., Geiss, R.H., Read, D.T., Dauskardt, R.H.: ‘Effects of barrier composition and electroplating chemistry on adhesion and voiding in copper/dielectric diffusion barrier films’, J. Appl. Phys., 2011, 110, pp. 4431244316 (doi: 10.1063/1.3624659).
    11. 11)
      • 2. Chandrasekar, M.S., Pushpavanam, M.: ‘Pulse and pulse reverse plating–conceptual, advantages and applications’, Electrochim. Acta, 2008, 53, pp. 33133322 (doi: 10.1016/j.electacta.2007.11.054).
    12. 12)
      • 1. Hsieh, S.S., Huang, C.F., Feng, C.L.: ‘A novel design and micro-fabrication for copper (Cu) electroforming bipolar plates’, Micron, 2008, 39, pp. 263268 (doi: 10.1016/j.micron.2007.03.003).
    13. 13)
      • 10. Bakonyi, I., Péter, L.: ‘Electrodeposited multilayer films with giant magnetoresistance (GMR): progress and problems’, Prog. Mater. Sci., 2010, 55, pp. 107245 (doi: 10.1016/j.pmatsci.2009.07.001).
    14. 14)
      • 9. Kim, H.K., Shin, S.C., Han, J.J., Han, J.W., Kang, S.N.: ‘Fabrication of metallic nano stamp to replicate patterned substrate using electron-beam recording, nanoimprinting, and electroforming’, IEEE Trans. Magn., 2009, 45, pp. 23042307 (doi: 10.1109/TMAG.2009.2016476).
    15. 15)
      • 19. Anson, F.C.: ‘Effect of surface oxidation on the behavior of platinum electrodes. The Fe (III)–Fe (II) couple in sulfuric acid and perchloric acid’, Anal. Chem., 1961, 33, pp. 934939 (doi: 10.1021/ac60175a036).
    16. 16)
      • 17. Zhang, Q.Y., Leng, Y.: ‘Electrochemical activation of titanium for biomimetic coating of calcium phosphate’, Biomaterials, 2005, 26, pp. 38533859 (doi: 10.1016/j.biomaterials.2004.09.057).
    17. 17)
      • 13. Chen, X., Xu, G.W., Luo, L.: ‘Development of seed layer deposition and fast copper electroplating into deep microvias for three-dimensional integration’, Micro Nano Lett., 2013, 8, pp. 191192 (doi: 10.1049/mnl.2012.0801).
    18. 18)
      • 11. Hou, K.H., Jeng, M.C., Ger, M.D.: ‘The heat treatment effects on the structure and wear behavior of pulse electroforming Ni–P alloy coatings’, J. Alloys Compd., 2007, 437, pp. 289297 (doi: 10.1016/j.jallcom.2006.07.120).
    19. 19)
      • 5. Rabizadeh, T., Yeganeh, M.: ‘Influence of TiC nanoparticles on microstructures and properties of electrodeposited Ni–P coatings’, Micro Nano Lett., 2003, 6, pp. 790793 (doi: 10.1049/mnl.2011.0366).
    20. 20)
      • 22. Langier, M.T.: ‘An energy approach to the adhesion of coatings using the scratch test’, Thin Solid Films, 1984, 117, pp. 243249 (doi: 10.1016/0040-6090(84)90354-7).
    21. 21)
      • 15. Sun, J.Y., Hong, D.H., Ahn, K.O., Park, S.H., Park, J.Y., Kim, Y.H.: ‘Adhesion study between electroless seed layers and build-up dielectric film substrates’, J. Electrochem. Soc., 2013, 160, pp. D107D110 (doi: 10.1149/2.049303jes).
    22. 22)
      • 7. Fesharaki, M.J., Péter, L., Schucknecht, T., et al: ‘Magnetoresistance and structural study of electrodeposited Ni-Cu/Cu multilayers’, J. Electrochem. Soc., 2012, 159, pp. D162D171 (doi: 10.1149/2.090203jes).
    23. 23)
      • 12. Chung, C.K., Lin, C.J., Wu, L.H., Fang, Y.J., Hong, Y.Z.: ‘Selection of mold materials for electroforming of monolithic two-layer microstructure’, Microsyst. Technol., 2004, 10, pp. 467471 (doi: 10.1007/s00542-004-0372-9).
    24. 24)
      • 18. Butler, J.A.V., Armstrong, G.: ‘The electrolytic properties of hydrogen. Part I: Hydrogen as an anodic depolariser. Part II: Effect of anodic polarisation of the platinum electrodes’, J. Chem. Soc., 1934, pp. 743750 (doi: 10.1039/jr9340000743).
    25. 25)
      • 8. Du, L.Q., Jia, S.F., Nie, W.R., Wang, Q.J.: ‘Fabrication of fuze microelectromechanical system safety device’, Chin. J. Mech. Eng., 2011, 24, pp. 836840 (doi: 10.3901/CJME.2011.05.836).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0484
Loading

Related content

content/journals/10.1049/mnl.2013.0484
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address