Stretchable cell culture platforms using micropneumatic actuators

Stretchable cell culture platforms using micropneumatic actuators

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A stretchable cell culture platform in which elastic micropneumatic actuators are embedded has been developed. By using the softlithography of polydimethylsiloxane (PDMS), the platform can be fabricated to any size and shape. It also permits cell culture by using the same standard methods that one would use with a Petri dish and it is transparent, permitting optical inspection of the cells. Thus, the platform is promising for studying cell responses because of mechanical stimulus. In this reported work, cells were cultured on a PDMS diaphragm of the micropneumatic actuators. Owing to input pressure, the micropneumatic actuators swell like a balloon, thereby stretching the cell membranes on the PDMS. The design flexibility of the presented approach is demonstrated by developing two kinds of stretchable platforms with diaphragm diameters of 558 and 24.8 μm to stretch whole and local cell membranes, respectively. Then, the cell membranes attached on the PDMS diaphragms are stretched by applying pressure on the pneumatic actuators. The applied stress causes an increase in the intracellular calcium ion concentration that is a fast cellular mechanotransduction. Therefore, it is concluded that the method for stretching cell membranes can stimulate either whole or local cell membranes, thus showing the potential to be used in in vitro studies of cellular mechanotransduction.


    1. 1)
      • 1. Volder, M.D., Reynaerts, D.: ‘Pneumatic and hydraulic microactuators: a review’, J. Micromech. Microeng., 2010, 20, pp. 118 (doi: 10.1088/0960-1317/20/4/043001).
    2. 2)
      • 2. Schomburg, W.K., Vollmer, J., Büstgens, B., Fahrenberg, J., Hein, H., Menz, W.: ‘Microfluidic components in LIGA technique’, J. Micromech. Microeng., 1994, 4, pp. 186191 (doi: 10.1088/0960-1317/4/4/003).
    3. 3)
      • 3. Grover, W.H., Ivester, R.H.C., Jensen, E.C., Mathies, R.A.: ‘Development and multiplexed control of latching pneumatic valves using microfluidic logical structures’, Lab Chip, 2006, 6, pp. 623631 (doi: 10.1039/b518362f).
    4. 4)
      • 4. Unger, M.A., Chou, H.-P., Thorsen, T., Scherer, A., Quake, S.R.: ‘Monolithic microfabricated valves and pumps by multilayer soft lithography’, Science, 2000, 288, pp. 113116 (doi: 10.1126/science.288.5463.113).
    5. 5)
      • 5. Huh, D., Matthews, B.D., Mammoto, A., Monotoya-Zavala, M., Hsin, H.Y., Ingber, D.E.: ‘Reconstituting organ-level lung functions on a chip’, Science, 2010, 328, pp. 16621668 (doi: 10.1126/science.1188302).
    6. 6)
      • 6. Brown, R.A., Prajapati, R., McGrouther, D.A., Yannas, I.V., Eastwood, M.: ‘Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates’, J. Cell Physiol., 1998, 175, pp. 323332 (doi: 10.1002/(SICI)1097-4652(199806)175:3<323::AID-JCP10>3.0.CO;2-6).
    7. 7)
      • 7. Kamotani, Y., Bersano-Begey, T., Kato, N., et al: ‘Individually programmable cell stretching microwell arrays actuated by a Braille display’, Biomaterials, 2008, 29, pp. 26462655 (doi: 10.1016/j.biomaterials.2008.02.019).
    8. 8)
      • 8. Choquet, D., Felsenfeld, D.P., Sheetz, M.P.: ‘Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages’, Cell, 1997, 88, pp. 3948 (doi: 10.1016/S0092-8674(00)81856-5).
    9. 9)
      • 9. Matthews, B.D., Overby, D.R., Mannix, R., Ingber, D.E.: ‘Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels’, J. Cell Sci., 2006, 119, pp. 508518 (doi: 10.1242/jcs.02760).
    10. 10)
      • 10. Davies, P.F., Tripathi, S.C.: ‘Mechanical stress mechanism and the cell. An endothelial paradigm’, Circ. Res., 1993, 72, pp. 239245 (doi: 10.1161/01.RES.72.2.239).
    11. 11)
      • 11. Chiquet, M., Gelman, L., Lutz, R., Maier, S.: ‘From mechanotransduction to extracellular matrix gene expression in fibroblasts’, Biochem. Biophys. Acta, 2009, 1793, pp. 911920 (doi: 10.1016/j.bbamcr.2009.01.012).
    12. 12)
      • 12. Jeong, O.C., Konishi, S.: ‘Fabrication and drive test of pneumatic PDMS micro pump’, Sens. Actuators A, Phys., 2007, 135, pp. 849856 (doi: 10.1016/j.sna.2006.09.012).
    13. 13)
      • 13. Brandl, F., Sommer, F., Goepferich, A.: ‘Rational design of hydrogels for tissue engineering impact of physical factors on cell behavior’, Biomaterials, 2007, 28, pp. 134146 (doi: 10.1016/j.biomaterials.2006.09.017).
    14. 14)
      • 14. Tarbell, J.M., Weinbaum, S., Kamm, R.D.: ‘Cellular fluid mechanics and mechanotransduction’, Ann. Biomed. Eng., 2005, 33, pp. 17191723 (doi: 10.1007/s10439-005-8775-z).
    15. 15)
      • 15. Lundbaek, J.A., Andersen, O.S.: ‘Spring constants for channel-induced lipid bilayer deformations estimates using gramicidin channels’, Biophys. J., 1999, 76, pp. 889895 (doi: 10.1016/S0006-3495(99)77252-8).
    16. 16)
      • 16. Markins, V.S., Sachs, F.: ‘Thermodynamics of mechanosensitivity’, in Hamill, O.P. (Ed.): ‘Mechanosensitive ion channels, Part A’ (Elsevier Academic Press, 2007), Chap. 4, pp. 90100.
    17. 17)
      • 17. Atsuta, K., Suzuki, H., Takeuchi, S.: ‘A parylene lift-off process with microfluidic channels for selective protein patterning’, J. Micromech. Microeng., 2007, 17, pp. 496500 (doi: 10.1088/0960-1317/17/3/011).

Related content

This is a required field
Please enter a valid email address