access icon free Wetting of carbon nanotube functionalised nylon and its usage as flexible electrode in electrowetting on dielectric

The nylons functionalised with single walled carbon nanotubes (SWCNTs) at pH 2.5 and 3.5 display the time dependence of the water droplet contact angle, which is attributed to the adsorption of water molecules onto the nylon–water contact surface and the consequent increase in surface free energy. The contact angle of nylons functionalised at pH 4.5, 6.5 and 8.0 varies marginally with contact time, presumably owing to the presence of a large amount of SWCNTs on the nylon surface. Using the obtained nylon as a flexible electrode, an electrowetting on a dielectric system is designed. The contact angle decreases with the increase of the applied voltage and the electrowetting response is sensitive to the surface free energy of the water droplet. A low surface free energy is preferable for actuating the movement of the water droplet at a low-driving voltage.

Inspec keywords: adsorption; contact angle; wetting; pH; surface energy; flexible electronics; polymers; free energy; carbon nanotubes

Other keywords: pH; dielectric system; low surface free energy; nylon-water contact surface; applied voltage; nylon surface; water molecule adsorption; electrowetting; water droplet contact angle; low-driving voltage; time dependence; electrowetting response; flexible electrode; carbon nanotube functionalised nylon wetting

Subjects: Thermodynamic properties and entropy; Fluid kinetics (evaporation, adsorption, condensation, catalysis, etc.); Fluid surface energy (surface tension, interface tension, angle of contact, etc.); Sorption and accommodation coefficients (surface chemistry)

References

    1. 1)
      • 12. Krucinska, I., Skrzetuska, E., Urbaniak-Domagala, W.: ‘The use of carbon nanotubes in textile printing’, J. Appl. Polym. Sci., 2011, 121, pp. 483490 (doi: 10.1002/app.33598).
    2. 2)
      • 17. Good, R.J., Girifalco, A.: ‘A theory for the estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data’, J. Phys. Chem., 1960, 64, pp. 561565 (doi: 10.1021/j100834a012).
    3. 3)
      • 10. Devaux, E., Aubry, C., Campagne, C., Rochery, M.: ‘PLA/carbon nanotubes multifilament yarns for relative humidity textile sensor’, J. Eng. Fiber Fabr., 2011, 6, pp. 1315.
    4. 4)
      • 7. Maillard, M., Legrand, J., Berge, B.: ‘Two liquids wetting and low hysteresis electrowetting on dielectric applications’, Langmuir, 2009, 25, pp. 61626167 (doi: 10.1021/la804118y).
    5. 5)
      • 13. Kang, T.J., Choi, A., Kim, D., et al: ‘Electromechanical properties of CNT-coated cotton yarn for electronic textile applications’, Smart Mater. Struct., 2011, 20, p. 015004 (doi: 10.1088/0964-1726/20/1/015004).
    6. 6)
      • 2. Nelson, W.C., Kim, C.J.: ‘Droplet actuation by electrowetting-on-dielectric (EWOD): a review’, J. Adhes. Sci. Technol., 2012, 26, pp. 17471771.
    7. 7)
      • 3. Chatterjee, D., Hetayothin, B., Wheeler, A.R., King, D.J., Garrell, R.L.: ‘Droplet-based microfluidics with nonaqueous solvents and solutions’, Lab Chip, 2006, 6, pp. 199206 (doi: 10.1039/b515566e).
    8. 8)
      • 5. Chang, Y.W., Kwok, D.Y.: ‘Electrowetting on dielectric: a low voltage study on self-assembled monolayers and its wetting kinetics’. Proc. 2004 Int. Conf. MEMS, NANO and Smart Systems, 0-7695-2189, 2004.
    9. 9)
      • 8. Bahadur, V., Garimella, S.V.: ‘Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces’, Langmuir, 2008, 24, pp. 83388345 (doi: 10.1021/la800556c).
    10. 10)
      • 15. Hu, L.B., Pasta, M., Mantia, F.L., et al: ‘Stretchable, porous, and conductive energy textiles’, Nano Lett., 2010, 10, pp. 708714 (doi: 10.1021/nl903949m).
    11. 11)
      • 16. Zhang, W., Shiozawa, H., Wu, C.W., Hamerton, I., Cox, D.C., Silva, S.R.P.: ‘The effect of pH on the functionalization of nylon fabric with carbon nanotubes’, J. Nanosci. Nanotechnol., 2012, 12, pp. 8490 (doi: 10.1166/jnn.2012.5130).
    12. 12)
      • 4. Cooney, C.G., Chen, C., Emerling, M.R., Sterling, J.D.: ‘Electrowetting droplet microfluidics on a single planar surface’, Microfluidics Nanofluidics, 2006, 2, pp. 435446 (doi: 10.1007/s10404-006-0085-8).
    13. 13)
      • 1. Prins, M.W.J., Welters, W.J.J., Weekamp, J.W.: ‘Fluid control in multichannel structures by electrocapillary pressure’, Science, 2001, 291, pp. 277280 (doi: 10.1126/science.291.5502.277).
    14. 14)
      • 9. Hayes, R.A., Feenstra, B.J.: ‘Video-speed electronic paper based on electrowetting’, Nature, 2003, 425, pp. 383385 (doi: 10.1038/nature01988).
    15. 15)
      • 6. Janocha, B., Bauser, H., Oehr, C., Brunner, H., Gopel, W.: ‘Competitive electrowetting of polymer surfaces by water and decane’, Langmuir, 2000, 16, pp. 33493354 (doi: 10.1021/la990518k).
    16. 16)
      • 18. Gilboa, A., Bachmann, J., Woche, S.K., Chen, Y.: ‘Applicability of interfacial theories of surface tension to water-repellent soils’, Soil. Sci. Soc. Am. J., 2006, 70, pp. 14171429 (doi: 10.2136/sssaj2005.0033).
    17. 17)
      • 19. Ruiz-Peña, M., Oropesa-Nuñez, R., Pons, T., Louro, S.R., Pérez-Gramatges, A.: ‘Physico-chemical studies of molecular interactions between non-ionic surfactants and bovine serum albumin’, Colloids Surf. B, Biointerfaces, 2010, 75, pp. 282289 (doi: 10.1016/j.colsurfb.2009.08.046).
    18. 18)
      • 20. Kreilgaard, L., Jones, L.S., Randolph, T.W., et al: ‘Effect of Tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant human factor XIII’, J. Pharm. Sci., 1998, 87, pp. 15971603.
    19. 19)
      • 11. Fischer, T., Wetzold, N., Elsner, H., Kroll, L., Hubler, A.C.: ‘Carbon nanotube areas-printed on textile and paper substrates’, Nanomater. Nanotechnol., 2011, 1, pp. 1823.
    20. 20)
      • 14. Shim, B.S., Chen, W., Doty, C., Xu, C.L., Kotov, N.A.: ‘Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes’, Nano Lett., 2008, 12, pp. 41514157 (doi: 10.1021/nl801495p).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0449
Loading

Related content

content/journals/10.1049/mnl.2013.0449
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading