access icon free HKUST-1 coated piezoresistive microcantilever array for volatile organic compound sensing

The HKUST-1 metal-organic framework (MOF) was selected because of the large internal surface area, excellent stability and known properties. Mechanical strain is generated upon the adsorption of analytes into the MOF; it is proportional to concentration and is a function of adsorbed species. Piezoresistive microcantilevers serve as a transduction mechanism to convert surface strain into electrical signals. N-doped piezoresistive cantilever arrays were fabricated with ten structures per die. Thin films of HKUST-1 were grown at room temperature using layer-by-layer techniques. Dry nitrogen was used as a carrier gas to expose devices to varying concentrations of 12 different volatile organic compounds (VOCs). Results show that stress-induced piezoresistive microcantilever array sensors with MOF coatings can provide a highly sensitive and reversible sensing mechanism for water vapour and methanol. Characteristic response features allow discrimination based on shape, response time constants and magnitude of response for other VOCs. Devices provided reliable data and proved durable over 18 months of testing. The key advantages of this type of sensor are higher sensitivity with a microporous MOFs, reversible response, α single chip sensing system and low power operation.

Inspec keywords: transducers; piezoresistive devices; thin films; microfabrication; chemical sensors; copper compounds; cantilevers; adsorption; organic compounds; microsensors

Other keywords: response time constants; characteristic response features; layer-by-layer techniques; carrier gas; reversible response; dry nitrogen; mechanical strain; analyte adsorption; electrical signals; surface strain; water vapour; microporous MOF coatings; methanol; HKUST-1 coated piezoresistive microcantilever array; transduction mechanism; temperature 293 K to 298 K; volatile organic compound sensing; thin films; single chip sensing system; low power operation; HKUST-1 metal-organic framework; internal surface area; N-doped piezoresistive cantilever arrays; stress-induced piezoresistive microcantilever array sensors

Subjects: Chemical variables measurement; Sensing and detecting devices; Microsensors and nanosensors; Transducers; Micromechanical and nanomechanical devices and systems; Fabrication of MEMS and NEMS devices; Chemical sensors; Chemical sensors

References

    1. 1)
      • 4. Arshak, K., Moore, E., Lyons, G.M., Harris, J., Clifford, S.: ‘A review of gas sensors employed in electronic nose applications’, Sensor Rev., 2004, 24, pp. 181198 (doi: 10.1108/02602280410525977).
    2. 2)
      • 23. Wang, Q.M., Shen, D.M., Bulow, M., et al: ‘Metallo-organic molecular sieve for gas separation and purification’, Microporous Mesoporous Mater., 2002, 55, pp. 217230 (doi: 10.1016/S1387-1811(02)00405-5).
    3. 3)
      • 13. Robinson, A.L., Stavila, V., Zeitler, T., et al: ‘Ultrasensitive humidity detection using metal-organic framework-coated microsensors’, Anal. Chem., 2012, 84, pp. 70437051 (doi: 10.1021/ac301183w).
    4. 4)
      • 10. Meek, S.T.: ‘Metal-organic frameworks: a rapidly growing class of versatile nanoporous meterials’, Adv. Mater., 2011, 23, pp. 249267 (doi: 10.1002/adma.201002854).
    5. 5)
      • 18. Ellern, I.: ‘Metal organic frameworks based gas sensors for detection of volatile organic compounds’. MS Thesis, Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 2013.
    6. 6)
      • 15. Brodiga, S., Regli, L., Bonino, F., et al: ‘Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR’, Phys. Chem. Chem. Phys., 2007, 9, pp. 26762685 (doi: 10.1039/b703643d).
    7. 7)
      • 20. Lee, J.-H., Houk, R., Greathouse, J.A., Allendorf, M.D., Hesketh, P.J.: ‘Microcantilever array sensors using nanoporous metal-organic frameworks (MOFS) for gas detection’. Hilton Head Sensors and Actuators Workshop, Hilton Head, SC, USA, 2010.
    8. 8)
      • 5. Wilson, A.D., Baietto, M.: ‘Applications and advances in electronic-nose technologies’, Sensors, 2009, 9, pp. 50995148 (doi: 10.3390/s90705099).
    9. 9)
      • 11. Iswarya, N., Kumar, M.G., Rajan, K.S., Bayappan, J.B.B.: ‘Metal organic framework (MOF-5) for sensing of volatile organic compounds’, J. Appl. Sci., 2012, 12, pp. 16811685 (doi: 10.3923/jas.2012.1681.1685).
    10. 10)
      • 21. Choudhury, A.: ‘A piezoresistive microcantilever array for chemical sensing applications’. PhD, Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 2007.
    11. 11)
      • 22. Venkatasubramanian, A.J.H.L., Houk, R.J.T., Allendorf, M.D., Nair, S., Hesketh, P.J.: ‘Characterization of HKUST-1 crystals and their application to MEMS microcantilever array sensors’. Presented at Meeting of the Electrochemical Society, Las Vegas, NV, USA, 2010.
    12. 12)
      • 7. Ellern, I., Venkatasubramanian, A., Lee, J.H., et al: ‘Characterization of piezoresistive microcantilever sensors with metal organic frameworks for the detection of volatile organic compounds’, ECS Trans., 2012, 50, pp. 469476 (doi: 10.1149/05012.0469ecst).
    13. 13)
      • 14. Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Duyne, R.V., Hupp, J.T.: ‘Metal-organic framework materials as chemical sensors’, Chem. Rev., 2012, 112, pp. 11051125 (doi: 10.1021/cr200324t).
    14. 14)
      • 6. Datar, R., Kim, S., Jeon, S., et al: ‘Cantilever sensors: nanomechanical tools for diagnostics’, MRS Bull., 2009, 34, pp. 449454 (doi: 10.1557/mrs2009.121).
    15. 15)
      • 16. Chui, S.S.-Y., Lo, S.M.-F., Charmant, J.P.H., Orpen, A.G., Williams, I.D.: ‘A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n’, Science, 1999, 283, p. 1148 (doi: 10.1126/science.283.5405.1148).
    16. 16)
      • 9. Stavila, V.: ‘Kinetics and mechanism of metal-organic framework thin film growth: systematic investigation of HKUST-1 deposition on QCM electrodes’, Chem. Sci., 2012, 3, pp. 15311540 (doi: 10.1039/c2sc20065a).
    17. 17)
      • 24. Fletcher, A.J., Thomas, K.M., Rosseinsky, M.J.: ‘Flexibility in metal organic framework materials: impact on sorption properties’, J. Solid State Chem., 2005, 178, pp. 24912510 (doi: 10.1016/j.jssc.2005.05.019).
    18. 18)
      • 1. Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W.: ‘Handbook of machine olfaction: electronic nose technology’ (Wiley-VCH, Weinheim, 2003).
    19. 19)
      • 19. Venkatasubramanian, A., Lee, J.-H., Stavila, V., Robinson, A., Allendorf, M.D., Hesketh, P.J.: ‘MOF@MEMS: design optimization for high sensitivity chemical detection’, Sens. Actuators B, Chem., 2012, 168, pp. 256262 (doi: 10.1016/j.snb.2012.04.019).
    20. 20)
      • 3. Allendorf, M.D., Thornberg, S.M., Lee, J.H., et al: ‘Investigation of microcantilever array with ordered nanoporous coatings for selective chemical detection’. Proc. of SPIE7679, Micro- and Nanotechnology Sensors, Systems, and Applications II, Orlando, FL, USA, 2010, pp. 767927.
    21. 21)
      • 2. Allendorf, M.D., Houk, R.J.T., Andruszkiewicz, L., et al: ‘Stress-induced chemical detection using flexible metal-organic frameworks’, JACS, 2008, 130, pp. 1440414405 (doi: 10.1021/ja805235k).
    22. 22)
      • 17. Farruseng, D., Daniel, C., Gaudillere, C., et al: ‘Heats of adsorption for seven gases in three metal-organic frameworks: systematic comparison of experiment and simulation’, Langmuir, 2009, 25, pp. 73837388 (doi: 10.1021/la900283t).
    23. 23)
      • 12. Khoshaman, A.H., Bahreyni, B.: ‘Application of metal organic framework crystals for sensing of volatile organic gases’, IEEE Sens., 2011, 162, pp. 11011104.
    24. 24)
      • 8. Allendorf, M.D.: ‘A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critial directions’, Chem, A Eur. J., 2012, 17, pp. 1137211388 (doi: 10.1002/chem.201101595).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0390
Loading

Related content

content/journals/10.1049/mnl.2013.0390
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading