HKUST-1 coated piezoresistive microcantilever array for volatile organic compound sensing

HKUST-1 coated piezoresistive microcantilever array for volatile organic compound sensing

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The HKUST-1 metal-organic framework (MOF) was selected because of the large internal surface area, excellent stability and known properties. Mechanical strain is generated upon the adsorption of analytes into the MOF; it is proportional to concentration and is a function of adsorbed species. Piezoresistive microcantilevers serve as a transduction mechanism to convert surface strain into electrical signals. N-doped piezoresistive cantilever arrays were fabricated with ten structures per die. Thin films of HKUST-1 were grown at room temperature using layer-by-layer techniques. Dry nitrogen was used as a carrier gas to expose devices to varying concentrations of 12 different volatile organic compounds (VOCs). Results show that stress-induced piezoresistive microcantilever array sensors with MOF coatings can provide a highly sensitive and reversible sensing mechanism for water vapour and methanol. Characteristic response features allow discrimination based on shape, response time constants and magnitude of response for other VOCs. Devices provided reliable data and proved durable over 18 months of testing. The key advantages of this type of sensor are higher sensitivity with a microporous MOFs, reversible response, α single chip sensing system and low power operation.


    1. 1)
      • 1. Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W.: ‘Handbook of machine olfaction: electronic nose technology’ (Wiley-VCH, Weinheim, 2003).
    2. 2)
      • 2. Allendorf, M.D., Houk, R.J.T., Andruszkiewicz, L., et al: ‘Stress-induced chemical detection using flexible metal-organic frameworks’, JACS, 2008, 130, pp. 1440414405 (doi: 10.1021/ja805235k).
    3. 3)
      • 3. Allendorf, M.D., Thornberg, S.M., Lee, J.H., et al: ‘Investigation of microcantilever array with ordered nanoporous coatings for selective chemical detection’. Proc. of SPIE7679, Micro- and Nanotechnology Sensors, Systems, and Applications II, Orlando, FL, USA, 2010, pp. 767927.
    4. 4)
      • 4. Arshak, K., Moore, E., Lyons, G.M., Harris, J., Clifford, S.: ‘A review of gas sensors employed in electronic nose applications’, Sensor Rev., 2004, 24, pp. 181198 (doi: 10.1108/02602280410525977).
    5. 5)
      • 5. Wilson, A.D., Baietto, M.: ‘Applications and advances in electronic-nose technologies’, Sensors, 2009, 9, pp. 50995148 (doi: 10.3390/s90705099).
    6. 6)
      • 6. Datar, R., Kim, S., Jeon, S., et al: ‘Cantilever sensors: nanomechanical tools for diagnostics’, MRS Bull., 2009, 34, pp. 449454 (doi: 10.1557/mrs2009.121).
    7. 7)
      • 7. Ellern, I., Venkatasubramanian, A., Lee, J.H., et al: ‘Characterization of piezoresistive microcantilever sensors with metal organic frameworks for the detection of volatile organic compounds’, ECS Trans., 2012, 50, pp. 469476 (doi: 10.1149/05012.0469ecst).
    8. 8)
      • 8. Allendorf, M.D.: ‘A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critial directions’, Chem, A Eur. J., 2012, 17, pp. 1137211388 (doi: 10.1002/chem.201101595).
    9. 9)
      • 9. Stavila, V.: ‘Kinetics and mechanism of metal-organic framework thin film growth: systematic investigation of HKUST-1 deposition on QCM electrodes’, Chem. Sci., 2012, 3, pp. 15311540 (doi: 10.1039/c2sc20065a).
    10. 10)
      • 10. Meek, S.T.: ‘Metal-organic frameworks: a rapidly growing class of versatile nanoporous meterials’, Adv. Mater., 2011, 23, pp. 249267 (doi: 10.1002/adma.201002854).
    11. 11)
      • 11. Iswarya, N., Kumar, M.G., Rajan, K.S., Bayappan, J.B.B.: ‘Metal organic framework (MOF-5) for sensing of volatile organic compounds’, J. Appl. Sci., 2012, 12, pp. 16811685 (doi: 10.3923/jas.2012.1681.1685).
    12. 12)
      • 12. Khoshaman, A.H., Bahreyni, B.: ‘Application of metal organic framework crystals for sensing of volatile organic gases’, IEEE Sens., 2011, 162, pp. 11011104.
    13. 13)
      • 13. Robinson, A.L., Stavila, V., Zeitler, T., et al: ‘Ultrasensitive humidity detection using metal-organic framework-coated microsensors’, Anal. Chem., 2012, 84, pp. 70437051 (doi: 10.1021/ac301183w).
    14. 14)
      • 14. Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Duyne, R.V., Hupp, J.T.: ‘Metal-organic framework materials as chemical sensors’, Chem. Rev., 2012, 112, pp. 11051125 (doi: 10.1021/cr200324t).
    15. 15)
      • 15. Brodiga, S., Regli, L., Bonino, F., et al: ‘Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR’, Phys. Chem. Chem. Phys., 2007, 9, pp. 26762685 (doi: 10.1039/b703643d).
    16. 16)
      • 16. Chui, S.S.-Y., Lo, S.M.-F., Charmant, J.P.H., Orpen, A.G., Williams, I.D.: ‘A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n’, Science, 1999, 283, p. 1148 (doi: 10.1126/science.283.5405.1148).
    17. 17)
      • 17. Farruseng, D., Daniel, C., Gaudillere, C., et al: ‘Heats of adsorption for seven gases in three metal-organic frameworks: systematic comparison of experiment and simulation’, Langmuir, 2009, 25, pp. 73837388 (doi: 10.1021/la900283t).
    18. 18)
      • 18. Ellern, I.: ‘Metal organic frameworks based gas sensors for detection of volatile organic compounds’. MS Thesis, Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 2013.
    19. 19)
      • 19. Venkatasubramanian, A., Lee, J.-H., Stavila, V., Robinson, A., Allendorf, M.D., Hesketh, P.J.: ‘[email protected]: design optimization for high sensitivity chemical detection’, Sens. Actuators B, Chem., 2012, 168, pp. 256262 (doi: 10.1016/j.snb.2012.04.019).
    20. 20)
      • 20. Lee, J.-H., Houk, R., Greathouse, J.A., Allendorf, M.D., Hesketh, P.J.: ‘Microcantilever array sensors using nanoporous metal-organic frameworks (MOFS) for gas detection’. Hilton Head Sensors and Actuators Workshop, Hilton Head, SC, USA, 2010.
    21. 21)
      • 21. Choudhury, A.: ‘A piezoresistive microcantilever array for chemical sensing applications’. PhD, Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 2007.
    22. 22)
      • 22. Venkatasubramanian, A.J.H.L., Houk, R.J.T., Allendorf, M.D., Nair, S., Hesketh, P.J.: ‘Characterization of HKUST-1 crystals and their application to MEMS microcantilever array sensors’. Presented at Meeting of the Electrochemical Society, Las Vegas, NV, USA, 2010.
    23. 23)
      • 23. Wang, Q.M., Shen, D.M., Bulow, M., et al: ‘Metallo-organic molecular sieve for gas separation and purification’, Microporous Mesoporous Mater., 2002, 55, pp. 217230 (doi: 10.1016/S1387-1811(02)00405-5).
    24. 24)
      • 24. Fletcher, A.J., Thomas, K.M., Rosseinsky, M.J.: ‘Flexibility in metal organic framework materials: impact on sorption properties’, J. Solid State Chem., 2005, 178, pp. 24912510 (doi: 10.1016/j.jssc.2005.05.019).

Related content

This is a required field
Please enter a valid email address