access icon free Three-dimensional hierarchical nickel-based hydroxides and oxides microspheres and their electrochemical properties

Nickel hydroxides (Ni(OH)2) with various morphologies, including flower-like, walnut-like and particle-aggregated microspheres, have been successfully synthesised by a surfactant-assisted microwave hydrothermal method. NiO microspheres have been obtained by calcining corresponding Ni(OH)2 precursors at 400°C for 2 h. The products were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and transform electron microscopy. The electrochemical properties of the NiO microspheres with different morphologies were also investigated.

Inspec keywords: crystal morphology; electrochemistry; nickel compounds; surfactants; thermal analysis; X-ray diffraction; scanning electron microscopy; calcination; infrared spectra; Fourier transform spectra

Other keywords: NiO; particle-aggregated microspheres; electrochemical properties; scanning electron microscopy; temperature 400 degC; nickel hydroxides; time 2 h; NiO microspheres; transform electron microscopy; morphology; surfactant-assisted microwave hydrothermal method; Fourier transform infrared spectroscopy; flower-like microspheres; walnut-like microspheres; oxides microspheres; three-dimensional hierarchical nickel-based hydroxides; Ni(OH)2; X-ray diffraction; thermogravimetric analysis; calcination

Subjects: Other heat and thermomechanical treatments; Infrared and Raman spectra in inorganic crystals; Crystal morphology and orientation; Electrochemistry and electrophoresis; Disperse systems

References

    1. 1)
      • 17. Zhou, Y.L., Wang, J.M., Chen, H., Pan, T., Zhang, J.Q., Caom, C.N.: ‘Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea’, Int. J. Hydrog. Energy, 2004, 29, (8), pp. 889896 (doi: 10.1016/j.ijhydene.2003.10.006).
    2. 2)
      • 6. Chen, J., Bradhurst, D.H., Dou, S.X., Liu, H.K.: ‘Nickel hydroxide as an active material for the positive electrode in rechargeable alkaline batteries’, J. Electrochem. Soc., 1999, 146, (10), pp. 36063612 (doi: 10.1149/1.1392522).
    3. 3)
      • 9. Yin, Y.D., Alivisatos, A.P.: ‘Colloidal nanocrystal synthesis and the organic–inorganic interface’, Nature, 2005, 437, (7059), pp. 664670 (doi: 10.1038/nature04165).
    4. 4)
      • 1. Ovshinsky, S.R., Fetcenko, M.A., Ross, J.: ‘A nickel metal hydride battery for electric vehicles’, Science, 1993, 260, (5105), pp. 176181 (doi: 10.1126/science.260.5105.176).
    5. 5)
      • 12. Shang, M., Wang, W.Z., Zhang, L., Sun, S.M., Wang, L., Zhou, L.: ‘3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synthesis and enhanced visible photocatalytic degradation performances’, J. Phys. Chem. C, 2009, 113, (13), pp. 1472714731 (doi: 10.1021/jp9045808).
    6. 6)
      • 7. Sun, Y., Xia, Y.: ‘Shape-controlled synthesis of gold and silver nanoparticles’, Science, 2002, 298, (5601), pp. 21762179 (doi: 10.1126/science.1077229).
    7. 7)
      • 16. Rajamathi, M., Kamath, P.V.: ‘On the relationship between α-nickel hydroxide and the basic salts of nickel’, J. Power Sci., 1998, 70, (1), pp. 118121 (doi: 10.1016/S0378-7753(97)02656-6).
    8. 8)
      • 18. Xu, Z.P., Zeng, H.C.: ‘Abrupt structural transformation in hydrotalcite-like compounds Mg1–xAlx(OH)2(NO3)x·nH2O as a continuous function of nitrate anions’, J. Phys. Chem. B, 2001, 105, (9), pp. 17431749 (doi: 10.1021/jp0029257).
    9. 9)
      • 11. Wu, C.Z., Lei, L.Y., Zhu, X., Yang, J.L., Xie, Y.: ‘Large-scale synthesis of titanate and anatase tubular hierarchitectures’, Small, 2007, 3, (9), pp. 15181522 (doi: 10.1002/smll.200700179).
    10. 10)
      • 20. Jeevanandam, P., Koltypin, Y., Gedanken, A.: ‘Synthesis of nanosized α-nickel hydroxide by a sonochemical method’, Nano Lett., 2001, 1, (5), pp. 263266 (doi: 10.1021/nl010003p).
    11. 11)
      • 19. Xu, Z.P., Xu, R., Zeng, H.C.: ‘Sulphate-functionaled carbon/metal-oxide nanocomposites from hydrotalcite-like compounds’, Nano Lett., 2001, 1, (3), pp. 703706 (doi: 10.1021/nl010045d).
    12. 12)
      • 5. Wang, D., Xu, R., Wang, X., Li, Y.: ‘NiO nanorings and their unexpected catalytic property for CO oxidation’, Nanotechnology, 2006, 17, pp. 979982 (doi: 10.1088/0957-4484/17/4/023).
    13. 13)
      • 13. Kim, T., Lian, J.B., Ma, J.M., Duan, X.C., Zheng, W.J.: ‘Morphology controllable synthesis of γ-alumina nanostructures via an ionic liquid-assisted hydrothermal route’, Cryst. Growth Des., 2010, 10, (7), pp. 29282933 (doi: 10.1021/cg901422v).
    14. 14)
      • 2. Mavis, B., Akine, M.: ‘Three-component layer double hydroxides by urea precipitation: structural stability and electrochemistry’, J. Power Sources, 2004, 134, (2), pp. 308317 (doi: 10.1016/j.jpowsour.2004.03.056).
    15. 15)
      • 10. Wang, X., Zhuang, J., Peng, Q., Li, Y.D.: ‘A general strategy for nanocrystal synthesis’, Nature, 2005, 437, (7055), pp. 121124 (doi: 10.1038/nature03968).
    16. 16)
      • 4. Kawano, M., Yoshida, H., Hashino, K., et al: ‘Synthesis of matrix-type NiO–SDC composite particles by spray pyrolysis with acid addition for development of SOFC cermet anode’, J. Power Sources, 2007, 173, (1), pp. 4552 (doi: 10.1016/j.jpowsour.2007.08.021).
    17. 17)
      • 3. Dirksen, J.A., Duval, K., Ring, T.A.: ‘NiO thin-film formaldehyde gas sensor’, Sens. Actuators B, 2001, 80, (2), pp. 106115 (doi: 10.1016/S0925-4005(01)00898-X).
    18. 18)
      • 15. Ramesh, T.N., Kamath, P.V.: ‘Synthesis of nickel hydroxide: effect of precipitation conditions on phase selectivity and structural disorder’, J. Power Sources, 2006, 156, (2), pp. 655661 (doi: 10.1016/j.jpowsour.2005.05.050).
    19. 19)
      • 14. Xu, L.P., Ding, Y.S., Chen, C.H., et al: ‘3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method’, Chem. Mater., 2008, 20, (1), pp. 308316 (doi: 10.1021/cm702207w).
    20. 20)
      • 8. Peng, Z.A., Peng, X.: ‘Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth’, J. Am. Chem. Soc., 2002, 124, (13), pp. 33433353 (doi: 10.1021/ja0173167).
    21. 21)
      • 21. Oh, C., Ki, C.D., Chang, J.Y., Oh, S.G.: ‘Preparation of PEG-grafted silica particles using emulsion method’, Mater. Lett., 2005, 59, (8–9), pp. 929933 (doi: 10.1016/j.matlet.2004.09.048).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0335
Loading

Related content

content/journals/10.1049/mnl.2013.0335
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading