access icon free Electrostatically driven magnetic field micromodulator with continuous modulating angle and large shifting range

Presented is a novel magnetic field modulator made up of permanent magnets, and having a torsional electrostatically driven structure, which was fabricated by electrodeposition and released by KOH solution wet etching. The magnetic properties of the electrodeposited CoNiMnP micromagnets and the torsional angle with respect to the driving voltage of the microdevice have been measured, and the modulation of the magnetic field has been demonstrated. The low power consumption micromodulator, which can achieve a continuous torsional angle of 0°–18° and a pull-in angle of 54.7°, has its own advantage over the traditional magnetic field modulating devices. The novel modulator has not only provided a more effective approach for magnetic field modulation, but also offered a torsional carrier actuator to be integrated with various functional materials or components in many applications.

Inspec keywords: modulators; phosphorus alloys; magnetic fields; permanent magnets; nickel alloys; etching; manganese alloys; micromagnetics; cobalt alloys; micromechanical devices; electrodeposition

Other keywords: power consumption micromodulator; traditional magnetic field modulating devices; magnetic field modulator; shifting range; pull-in angle; driving voltage; microdevice; continuous modulating angle; magnetic properties; electrodeposition; torsional carrier actuator; CoNiMnP; KOH solution wet etching; torsional angle; functional materials; torsional electrostatically driven structure; electrostatically driven magnetic field micromodulator; electrodeposited CoNiMnP micromagnets; permanent magnets

Subjects: General fabrication techniques; Micromechanical and nanomechanical devices and systems; Fabrication of MEMS and NEMS devices; Surface treatment (semiconductor technology); Magnetic instruments and techniques; Permanent magnets; Modulators, demodulators, discriminators and mixers

References

    1. 1)
      • 6. Wiltschko, W., Wiltschko, R.: ‘Magnetic orientation and magnetoreception in birds and other animals’, J. Comp. Physiol. A, Neuroethol. Sens. Neural Behav. Physiol., 2005, 8, pp. 675693.
    2. 2)
      • 22. Watts, C.M., Liu, X.L., Padilla, W.J.: ‘Metamaterial electromagnetic wave absorbers’, Adv. Mater., 2012, 24, pp. 98120.
    3. 3)
      • 25. Sun, X.M., Yuan, Q., Fang, D.M., Zhang, H.X.: ‘Electrodeposition and characterization of CoNiMnP permanent magnet arrays for MEMS sensors and actuators’, Sens. Actuators A, 2012, 188, pp. 190197 (doi: 10.1016/j.sna.2011.12.025).
    4. 4)
      • 14. Toshiyoshi, H., Fujita, H.: ‘Electrostatic micro torsion mirrors for an optical switch matrix’, J. Microelectromech. Syst., 1996, 5, pp. 231237 (doi: 10.1109/84.546402).
    5. 5)
      • 1. Cugat, O., Delamare, J., Reyne, G.: ‘Magnetic micro-actuators and systems (MAGMAS)’, IEEE Trans. Magn., 2003, 39, (5), pp. 36073612 (doi: 10.1109/TMAG.2003.816763).
    6. 6)
      • 21. Liakopoulos, T.M., Zhang, W.J., Ahn, C.H.: ‘Electroplated thick CoNiMnP permanent magnet arrays for micromachined magnetic device applications’. IEEE Proc. 9th Annual Int. Workshop on Micro Electro Mechanical Systems, ‘An investigation of micro structures, sensors, actuators, machines and systems’, San Diego, CA, USA, February 1996.
    7. 7)
      • 3. Gibbs, M.: ‘Applications of magmems’, J. Magn. Magn. Mater., 2005, 290, pp. 12981303 (doi: 10.1016/j.jmmm.2004.11.572).
    8. 8)
      • 11. Walcott, C., Green, R.P.: ‘Orientation of homing pigeons altered by a change in the direction of an applied magnetic field’, Science, 1974, 184, (4133), pp. 180182 (doi: 10.1126/science.184.4133.180).
    9. 9)
      • 24. Shan, G., Nelson, B.J.: ‘Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators’, J. Magn. Magn. Mater., 2005, 292, pp. 4958 (doi: 10.1016/j.jmmm.2004.10.094).
    10. 10)
      • 7. Mora, C.V., Davison, M., Wild, J.M., Walker, M.M.: ‘Magnetoreception and its trigeminal mediation in the homing pigeon’, Nature, 2004, 432, pp. 508511 (doi: 10.1038/nature03077).
    11. 11)
      • 6. Wiltschko, W., Wiltschko, R.: ‘Magnetic orientation and magnetoreception in birds and other animals’, J. Comp. Physiol. A, Neuroethol. Sens. Neural Behav. Physiol., 2005, 8, pp. 675693 (doi: 10.1007/s00359-005-0627-7).
    12. 12)
      • 5. Arnold, D.P., Wang, N.G.: ‘Permanent magnets for MEMS’, J. Microelectromech. Syst, 2009, 18, (6), pp. 12551266 (doi: 10.1109/JMEMS.2009.2034389).
    13. 13)
      • 10. Keeton, W.T.: ‘Magnets interfere with pigeon homing’, Proc. Natl. Acad. Sci. USA, 1971, 68, (1), pp. 102106 (doi: 10.1073/pnas.68.1.102).
    14. 14)
      • 16. Tsai, J.M.L., Chu, H.Y., Hsieh, J., Fang, W.L.: ‘The BELST II process for a silicon high-aspect-ratio micromaching vertical comb actuator and its applications’, J. Micromech. Microeng., 2003, 14, pp. 235241 (doi: 10.1088/0960-1317/14/2/010).
    15. 15)
      • 19. Degani, O., Socher, E., Lipson, A., Leitner, T., Setter, D.J., Kaldor, S., Nemirovsky, Y.: ‘Pull-in study of an electrostatic torsion microactuator’, J. Microelectromech. Syst., 1998, 7, pp. 373379 (doi: 10.1109/84.735344).
    16. 16)
      • 23. He, X.J., Wang, Y., Wang, J.M., Gui, T.L.: ‘MEMS switches controlled multi-split ring resonator as a tunable metamaterial component’, Microsyst. Technol., 2010, 16, pp. 18311837 (doi: 10.1007/s00542-010-1126-5).
    17. 17)
      • 9. Dennis, T.E., Rayner, M.J., Walker, M.M.: ‘Evidence that pigeons orient to geomagnetic intensity during homing’, Proc. Royal Soc. B, Biol. Sci., 2007, 274, (1614), pp. 11531158 (doi: 10.1098/rspb.2007.3768).
    18. 18)
      • 12. Visalberghi, E., Alleva, E.: ‘Magnetic influences on pigeon homing’, Biol. Bull., 1979, 156, (2), pp. 246256 (doi: 10.2307/1541047).
    19. 19)
      • 17. Hah, D., Patterson, P.R., Nguyen, H.D., Toshiyoshi, H., Wu, M.C.: ‘Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors’, IEEE J. Sel. Top. Quantum Electron., 2004, 10, pp. 505513 (doi: 10.1109/JSTQE.2004.829200).
    20. 20)
      • 22. Watts, C.M., Liu, X.L., Padilla, W.J.: ‘Metamaterial electromagnetic wave absorbers’, Adv. Mater., 2012, 24, pp. 98120 (doi: 10.1002/adma.201290138).
    21. 21)
      • 15. Wu, W.G., Li, D.C., Sun, W., Hao, Y.L., Yan, G.Z., Jin, S.J.: ‘Fabrication and characterization of torsion-mirror actuators for optical networking applications’, Sens. Actuators A, 2003, 108, pp. 175181 (doi: 10.1016/S0924-4247(03)00366-2).
    22. 22)
      • 20. Zhang, X.M., Chau, F.S., Quan, C., Lam, Y.L., Liu, A.Q.: ‘A study of the static characteristics of a torsional micromirror’, Sens. Actuators A, 2001, 90, pp. 7381 (doi: 10.1016/S0924-4247(01)00453-8).
    23. 23)
      • 13. Liu, K., Cao, Y.T., Yu, H.Q., Li, Z.H.: ‘A microactuator for magnetic field control device with large shifting range’. Proc. 8th Annual IEEE Int. Conf. on Nano/Micro Engineered and Molecular systems, Suzhou, China, April 2013.
    24. 24)
      • 4. Niarchos, D.: ‘Magnetic MEMS: key issues and some applications’, Sens. Actuators A, 2003, 109, pp. 166173 (doi: 10.1016/j.sna.2003.09.010).
    25. 25)
      • 8. Wilzck, C., Wiltschko, W., Gunturkun, O., Buschmann, J.U., Wiltschko, R., Prior, H.: ‘Learning of magnetic compass directions in pigeons’, Anim. Cogn., 2010, 13, pp. 443451 (doi: 10.1007/s10071-009-0294-0).
    26. 26)
      • 18. Xie, H.K., Pan, Y.T., Fedder, G.K.: ‘A CMOS-MEMS mirror with curled-hinge comb drives’, J. Microelectromech. Syst., 2003, 12, pp. 450456 (doi: 10.1109/JMEMS.2003.815839).
    27. 27)
      • 2. Gibbs, M., Hill, E.W., Wright, P.J.: ‘Magnetic materials for MEMS applications’, J. Phys. D, Appl. Phys., 2004, 37, (22), pp. 237244 (doi: 10.1088/0022-3727/37/22/R01).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0305
Loading

Related content

content/journals/10.1049/mnl.2013.0305
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading