access icon free Nucleosides analogues recognition by molecularly imprinted polymer-coated Love wave sensor

Presented is a process for thin film molecularly imprinted polymer (MIP) coating based on commercial nucleotides adenosine monophosphate (AMP). The compatibility of the MIP film with acoustic propagation and sensor sensitivity for rebinding of AMP have been verified. Thin and porous layers of AMP-based MIP layers were successfully deposited on the sensor surface. Detection tests of AMP have been performed in aqueous media. The sensor response was recorded in terms of frequency and total insertion losses after both steps: AMP extraction from MIP then AMP rebinding. The sensor showed high sensitivity to 25 ppm AMP concentration. The effect of the extraction time on rebinding capacity of the MIP layer has been proven.

Inspec keywords: polymer films; porous materials; acoustic devices; Love waves; coatings; thin film sensors; biomedical equipment; acoustic wave propagation

Other keywords: adenosine monophosphate; acoustic propagation; AMP concentration; MIP film; molecularly imprinted polymer-coated Love wave sensor; AMP-based MIP layers; aqueous media; porous layers; AMP rebinding; nucleotides; acoustic sensor; rebinding capacity

Subjects: Patient diagnostic methods and instrumentation; Sonic and ultrasonic equipment; Sonic and ultrasonic radiation (medical uses); Sonic and ultrasonic radiation (biomedical imaging/measurement); Sensing devices and transducers; Sensing and detecting devices

References

    1. 1)
      • 9. Kryscio, D.R., Peppas, N.A.: ‘Critical review and perspective of macromolecularly imprinted polymers’, Acta Biomat., 2010, ED-198, pp. 461473.
    2. 2)
      • 13. Lin, T-Y., Hu, C.-H., Chou, T.-C.: ‘Determination of albumin concentration by MIP-QCM sensor’, Biosens. Bioelectron., 2004, 20, pp. 7581 (doi: 10.1016/j.bios.2004.01.028).
    3. 3)
      • 2. Simon, E.: ‘Biological and chemical sensors for cancer diagnosis’, Meas. Sci. Technol., 2010, ED-21, p. 24.
    4. 4)
      • 11. He, Q., Severac, F., Hajjoul, H., Viero, Y., Bancaud, A.: ‘Directed assembly of nanoparticles along predictable large-scale patterns using micromolded hydrogels’, Am. Chem. Soc., 2011, ED-9, pp. 755.
    5. 5)
      • 4. Raimbault, V., Rebiére, D., Dejous, C., Guirardel, M., Lachaud, J.L.: ‘Molecular weight influence study of aqueous poly(ethylene glycol) solutions with a microfluidic Love wave sensor’, Sens. Actuators B, 2010, ED-144, pp. 318322 (doi: 10.1016/j.snb.2009.10.070).
    6. 6)
      • 10. Buvailoa, A., Xing, Y., Hines, J., Borguet, E.: ‘Thin polymer film based rapid surface acoustic wave humidity sensors’, Sens. Actuators B, 2011, ED-156, pp. 444449 (doi: 10.1016/j.snb.2011.04.080).
    7. 7)
      • 11. He, Q., Severac, F., Hajjoul, H., Viero, Y., Bancaud, A.: ‘Directed assembly of nanoparticles along predictable large-scale patterns using micromolded hydrogels’, Am. Chem. Soc., 2011, ED-9, pp. 755 (doi: 10.1021/la200064n).
    8. 8)
      • 13. Lin, T-Y., Hu, C.-H., Chou, T.-C.: ‘Determination of albumin concentration by MIP-QCM sensor’, Biosens. Bioelectron., 2004, 20, pp. 7581 (doi: 10.1016/j.bios.2004.01.028).
    9. 9)
      • 12. Breton, F., Delepee, R., Agrofoglio, L.A.: ‘Molecular imprinting of AMP by an ionic noncovalent dual approach’, J. Sep. Sci., 2009, ED-32, pp. 32853291 (doi: 10.1002/jssc.200900226).
    10. 10)
      • 7. Zhang, B., Mao, Q., Zhang, X., et al: ‘A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chronic gonadotropin’, Biosens. Bioelectron., 2004, ED-19, pp. 711720 (doi: 10.1016/S0956-5663(03)00260-4).
    11. 11)
      • 9. Kryscio, D.R., Peppas, N.A.: ‘Critical review and perspective of macromolecularly imprinted polymers’, Acta Biomat., 2010, ED-198, pp. 461473 (doi: 10.1016/j.actbio.2011.11.005).
    12. 12)
      • 1. Yun, Y., Eteshola, E., Bhattacharya, A., et al: ‘Tiny medicine: nanomaterial-based biosensors’, Sensors, 2009, ED-9, pp. 92759299 (doi: 10.3390/s91109275).
    13. 13)
      • 6. Chu, S.F., Hsu, W.L., Hwang, J.M., Chen, C.Y.: ‘Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on a quartz crystal microbalance’, Anal. Chim. Acta, 2002, ED-453, pp. 181189 (doi: 10.1016/S0003-2670(01)01466-0).
    14. 14)
      • 5. Tigli, O., Bivona, L., Berg, P., Zaghloul, M.E.: ‘Fabrication and characterization of a surface-acoustic-wave biosensor in CMOS technology for cancer biomarker detection’, IEEE Trans. Biomed. Circuits Syst., 2010, ED-4, pp. 6272 (doi: 10.1109/TBCAS.2009.2033662).
    15. 15)
      • 2. Simon, E.: ‘Biological and chemical sensors for cancer diagnosis’, Meas. Sci. Technol., 2010, ED-21, p. 24 (doi: 10.1088/0957-0233/21/11/112002).
    16. 16)
      • 3. Soper, A., Brown, K., Ellington, A., et al: ‘Point-of-care biosensor systems for cancer diagnostics/prognostics’, Biosens. Bioelectron., 2006, ED-21, pp. 19321942 (doi: 10.1016/j.bios.2006.01.006).
    17. 17)
      • 8. Gronewold, T.M.A., Baumgartner, A., Quandt, E., Famulok, M.: ‘Discrimination of single mutations in cancer-related gene fragments with a surface acoustic wave sensor’, Anal. Chem, 2006, ED-78, pp. 48654871 (doi: 10.1021/ac060296c).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0207
Loading

Related content

content/journals/10.1049/mnl.2013.0207
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading