Your browser does not support JavaScript!

Photocatalytic activity of Cu doped TiO2 nanoparticles and comparison of two main doping procedures

Photocatalytic activity of Cu doped TiO2 nanoparticles and comparison of two main doping procedures

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this reported work, TiO2 nanoparticles containing anatase-rutile and pure rutile phases were prepared by sol–gel and hydrolysis in acidic solution methods, respectively. Two general procedures, doping during synthesis (DDS) via a hydrolysis method and doping on the provided TiO2 nanoparticles (DOP) that is performed by the impregnation method have been studied by doping copper to these nanoparticles. The photocatalytic activity was evaluated by photodegradation of C.I. Acid Red 27 as a model contaminant. The prepared samples were characterised by X-ray diffraction, atomic absorption flame emission spectroscopy and scanning electron microscopy. It is found that the photosensitised degradation activity can be enhanced by doping an appropriate amount of Cu. Photocatalytic activity results indicated that samples that have been doped by the DDS procedure show higher photocatalytic efficiency than samples doped by the DOP procedure.


    1. 1)
      • 3. Herrmann, J.M., Disdier, J., Pichat, P., Malato, S., Blanco, J.: ‘TiO2-based solar photocatalytic detoxification of water containing organic pollutants. Case studies of 2, 4-dichlorophenoxyaceticacid (2, 4-D) and of benzofuran’, Appl. Catal. B, 1998, 17, pp. 1523 (doi: 10.1016/S0926-3373(97)00098-2).
    2. 2)
      • 6. García, S.J., Gómez, H.E., Ocampo, F.M., Pal, U.: ‘Effect of Ag doping on the crystallization and phase transition of TiO2 nanoparticles’, Cur. Appl. Phys., 2009, 9, pp. 10971105 (doi: 10.1016/j.cap.2008.12.008).
    3. 3)
      • 8. Chen, D., Zhang, H., Hu, S., Li, J.: ‘Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites’, J. Phys. Chem., 2008, 112, pp. 117122 (doi: 10.1021/jp075654+).
    4. 4)
      • 17. Arana, J., Garriga, I.C.C., Dona, R.J.M., Gonzalez, D.O., Herrera, M.J.A., Perez, P.J.: ‘FTIR study of formic acid interaction with TiO2 and TiO2 doped with Pd and Cu in photocatalytic processes’, Appl. Surf. Sci., 2004, 239, pp. 6071.
    5. 5)
      • 2. Zhang, F., Zhao, J., Shen, T., Hidaka, H., Pelizzetti, E., Serpone, N.: ‘TiO2-assisted photodegradation of dye pollutants. II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation’, Appl. Catal. B, 1998, 15, pp. 147156 (doi: 10.1016/S0926-3373(97)00043-X).
    6. 6)
      • 10. Muruganandham, M., Swaminathan, M.: ‘Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process’, Dyes Pigments, 2006, 68, pp. 133142 (doi: 10.1016/j.dyepig.2005.01.004).
    7. 7)
      • 23. Kontapakdee, K., Panpranot, J., Praserthdam, P.: ‘Effect of Ag addition on the properties of Pd–Ag/TiO2 catalysts containing different TiO2 crystalline phases’, Catal. Commun., 2007, 8, pp. 21662170 (doi: 10.1016/j.catcom.2007.03.003).
    8. 8)
      • 24. Tian, B., Zhang, J., Tong, T., Chen, F.: ‘Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange’, Appl. Catal. B, Environ., 2008, 79, pp. 394401 (doi: 10.1016/j.apcatb.2007.11.001).
    9. 9)
      • 1. Rivera, A.P., Tanaka, K., Hisanaga, T.: ‘Photocatalytic degradation of pollutant over TiO2 in different crystal structures’, Appl. Catal. B, 1993, 3, pp. 3744 (doi: 10.1016/0926-3373(93)80066-M).
    10. 10)
      • 22. Spurr, R.A., Myers, H.: ‘Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer’, Anal. Chem., 1957, 29, pp. 760762 (doi: 10.1021/ac60125a006).
    11. 11)
      • 20. Behnajady, M.A., Eskandarloo, H., Modirshahla, N., Shokri, M.: ‘Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles’, Desalination, 2011, 278, pp. 1017 (doi: 10.1016/j.desal.2011.04.019).
    12. 12)
      • 19. Xia, H.X., Gao, Y., Wang, Z., Jia, Z.J.: ‘Structure and photocatalytic properties of copper-doped rutile TiO2 prepared by a low-temperature process’, J. Phys. Chem. Solids, 2008, 69, pp. 28882893 (doi: 10.1016/j.jpcs.2008.07.011).
    13. 13)
      • 5. Zhao, Y., Li, C., Liu, X., Gu, F., Du, H.L., Shi, L.: ‘Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen–oxygen diffusion flame’, Appl. Catal. B, 2008, 79, pp. 208215 (doi: 10.1016/j.apcatb.2007.09.044).
    14. 14)
      • 25. Li, Y., Hwang, D.S., Lee, N.H., Kim, S.J.: ‘Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst’, Chem. Phys. Lett., 2005, 404, pp. 2529 (doi: 10.1016/j.cplett.2005.01.062).
    15. 15)
      • 15. Slamet Nasution, H.W., Purnama, E., Kosela, S., Gunlazuardi, J.: ‘Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method’, Catal. Commun., 2005, 6, pp. 313319 (doi: 10.1016/j.catcom.2005.01.011).
    16. 16)
      • 13. Tang, J., Redl, F., Zhu, Y., Siegrist, T., Brus, L.E., Steigerwald, M.L.: ‘An organometallic synthesis of TiO2 nanoparticles’, Nano Lett., 2005, 5, pp. 543548 (doi: 10.1021/nl047992h).
    17. 17)
      • 7. Wu, Y., Zhang, J., Xiao, L., Chen, F.: ‘Preparation and characterization of TiO2 photocatalysts by Fe3 + doping together with Au deposition for the degradation of organic pollutants’, Appl. Catal. B., 2009, 88, pp. 525532 (doi: 10.1016/j.apcatb.2008.10.008).
    18. 18)
      • 18. Li, W.C., Comotti, M., Schüth, F.: ‘Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation’, J. Catal., 2006, 237, pp. 190196 (doi: 10.1016/j.jcat.2005.11.006).
    19. 19)
      • 4. Araña, J., Doña, R.J.M., González, D.O., et al: ‘Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu’, J. Mol. Catal. A, 2004, 215, pp. 153160 (doi: 10.1016/j.molcata.2004.01.020).
    20. 20)
      • 14. Boccuzzi, F., Chiorino, A., Manzoli, M., et al: ‘Gold, silver and copper catalysts supported on TiO2 for pure hydrogen production’, Catal. Today, 2002, 75, pp. 169175 (doi: 10.1016/S0920-5861(02)00060-3).
    21. 21)
      • 16. Sun, B., Vorontsov, A.V., Smirniotis, P.G.: ‘Role of platinum deposited on TiO2 in phenol photocatalytic oxidation’, Langmuir, 2003, 19, pp. 31513156 (doi: 10.1021/la0264670).
    22. 22)
      • 12. Sahu, M., Biswas, P.: ‘Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor’, Nanoscale Res. Lett., 2011, 6, pp. 441455 (doi: 10.1186/1556-276X-6-441).
    23. 23)
      • 21. Patterson, A.L.: ‘The Scherrer formula for X-ray particle size determination’, Phys. Rev., 1939, 56, pp. 978982 (doi: 10.1103/PhysRev.56.978).
    24. 24)
      • 27. Yingtao, Z., Wei, W., Ying, D., Baibiao, H.: ‘Tuning electronic structure and photocatalytic properties by Ag incorporated on (001) surface of anatase TiO2’, Appl. Surf. Sci., 2012, 258, pp. 48064812 (doi: 10.1016/j.apsusc.2012.01.110).
    25. 25)
      • 9. Wang, J., Lv, Y., Zhang, L., et al: ‘Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation’, Ultrason. Sonochem., 2010, 17, pp. 642648 (doi: 10.1016/j.ultsonch.2009.12.016).
    26. 26)
      • 11. Wu, G., Wang, J., Thomas, D.F., Chen, A.: ‘Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity’, Langmuir, 2008, 24, pp. 35033509 (doi: 10.1021/la703098g).
    27. 27)
      • 26. Baifu, X.Z.R., Peng, W., Jia, L., Liqiang, J., Honggang, F.U.: ‘Study on the mechanisms of photoinduced carriers separation and recombination for Fe3 +-TiO2 photocatalysts’, Appl. Surf. Sci., 2007, 253, pp. 43904395 (doi: 10.1016/j.apsusc.2006.09.049).

Related content

This is a required field
Please enter a valid email address