access icon free Raman spectroscopic image analysis on micropatterned graphene

A study has been conducted on patterned graphene with widths in the range of 0.1–4 μm which was grown by chemical vapour deposition and patterned by electron beam lithography. The microscopic behaviour of the Raman spectrum was investigated using image mapping from Raman spectroscopic data. Among three main peaks (D-band, G-band and 2D-band), the two-dimensional (2D) peak was clear even in 200 nm width graphene, however the D-band signal was very weak, confirming low defect concentration. It was found that the 2D-band line width was decreased as the width became narrower, which was explained by refining the electronic band structure because of confined sample size. The 2D- and G-band intensities were decreased by reducing the width because the laser beam spot size was greater than the width of the sample and the effective area generating the signal was reduced.

Inspec keywords: spectral line intensity; spectral line breadth; chemical vapour deposition; band structure; graphene; electron beam lithography; Raman spectra

Other keywords: chemical vapour deposition; Raman spectrum; C; 2D peak; size 0.1 mum to 4 mum; confined size; microscopic behaviour; laser beam spot size; image mapping; 2D-band intensity; electronic band structure; D-band signal; Raman spectroscopic image analysis; G-band intensity; defect concentration; 2D-band line width; electron beam lithography; effective area generating signal; micropatterned graphene

Subjects: Electron states in low-dimensional structures; Optical properties of graphene and graphene related materials (thin films, low-dimensional and nanoscale structures); Structure of graphene and graphene-related materials; Infrared and Raman spectra in inorganic crystals; Chemical vapour deposition

References

    1. 1)
      • 4. Basko, D.M.: ‘Theory of resonant multiphonon Raman scattering in graphene’, Phys. Rev. B, 2008, 78, p. 125418 (doi: 10.1103/PhysRevB.78.125418).
    2. 2)
      • 5. Ni, Z.H., Yu, T., Luo, Z.Q., et al: ‘Probing charged impurities in suspended graphene using Raman spectroscopy’, ACS Nano, 2009, 3, (3), pp. 569574 (doi: 10.1021/nn900130g).
    3. 3)
      • 1. Ferrari, A.C., Meyer, J.C., Scardaci, V., et al: ‘Raman spectrum of graphene and graphene layers’, Phys. Rev. Lett., 2006, 97, (18), p. 187401 (doi: 10.1103/PhysRevLett.97.187401).
    4. 4)
      • 7. Ioffe, Z., Shamai, T., Ophir, A., et al: ‘Detection of heating in current-carrying molecular junctions by Raman scattering’, Nature Nanotechnol., 2008, 3, (12), pp. 727732 (doi: 10.1038/nnano.2008.304).
    5. 5)
      • 9. Ryu, S., Maultzsch, J., Han, M.Y., Kim, P., Brus, L.E.: ‘Raman spectroscopy of lithographically patterned graphene nanoribbons’, ACS Nano, 2011, 5, (5), pp. 41234130 (doi: 10.1021/nn200799y).
    6. 6)
      • 10. Bischoff, D., Güttinger, J., Dröscher, S., Ihn, T., Ensslin, K., Stampfer, C.: ‘Raman spectroscopy on etched graphene nanoribbons’, J. Appl. Phys., 2011, 109, p. 073710 (doi: 10.1063/1.3561838).
    7. 7)
      • 2. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., Eklund, P.C.: ‘Raman scattering from high-frequency phonons in supported N-graphene layer films’, Nano Lett., 2006, 6, (12), pp. 26672673 (doi: 10.1021/nl061420a).
    8. 8)
      • 6. Chen, C.C., Bao, W., Theiss, J., Dames, C., Lau, C.N., Cronin, S.B.: ‘Raman spectroscopy of ripple formation in suspended graphene’, Nano Lett., 2009, 9, (12), pp. 41724176 (doi: 10.1021/nl9023935).
    9. 9)
      • 15. Pirkle, A., Chan, J., Venugopal, A., et al: ‘The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2’, Appl. Phys. Lett., 2011, 99, (12), p. 122108 (doi: 10.1063/1.3643444).
    10. 10)
      • 14. Chen, J.H., Cullen, W.G., Jang, C., Fuhrer, M.S., Williams, E.D.: ‘Defect scattering in graphene’, Phys. Rev. Lett., 2009, 102, (23), p. 236805 (doi: 10.1103/PhysRevLett.102.236805).
    11. 11)
      • 16. Lin, Y.-C., Lu, C.-C., Yeh, C.-H., Jin, C., Suenaga, K., Chiu, P.-W.: ‘Graphene annealing: how clean can it be?’, Nano Lett., 2012, 12, pp. 414419 (doi: 10.1021/nl203733r).
    12. 12)
      • 13. Narula, R., Reich, S.: ‘Double resonant Raman spectra in graphene and graphite: a two-dimensional explanation of the Raman amplitude’, Phys. Rev. B, 2008, 78, p. 165422 (doi: 10.1103/PhysRevB.78.165422).
    13. 13)
      • 8. Pan, S.G., Liu, X.H., Wang, X.: ‘Preparation of Ag2S-graphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity’, Mater. Charact., 2011, 62, (11), pp. 10941101 (doi: 10.1016/j.matchar.2011.08.004).
    14. 14)
      • 12. Thomsen, C., Reich, S.: ‘Double resonant Raman scattering in graphite’, Phys. Rev. Lett., 2000, 85, (24), pp. 52145217 (doi: 10.1103/PhysRevLett.85.5214).
    15. 15)
      • 3. Casiraghi, C.: ‘Raman intensity of graphene’, Phys. Status Solidi B, 2011, 248, pp. 25932597 (doi: 10.1002/pssb.201100040).
    16. 16)
      • 11. Casiraghi, C., Hartschuh, A., Qian, H., et al: ‘Raman spectroscopy of graphene edges’, Nano Lett., 2009, 9, (4), pp. 14331441 (doi: 10.1021/nl8032697).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0160
Loading

Related content

content/journals/10.1049/mnl.2013.0160
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading