Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Ternary semiconductor ZnSe0.7Te0.3 nanowires

Ternary semiconductor ZnSe0.7Te0.3 nanowires (NWs) are synthesised by using a thermal evaporation method, and the as-synthesised NWs have a wurtzite structure with a growth direction of [001]. The electrical measurements are carried out based on nano-field-effect transistors fabricated by individual NWs, and the electron transport characteristics reveal that the ZnSe0.7Te0.3 NWs have p-type conductivity with a high-mobility (μh ) of 0.9 cm2 V−1S−1 and carrier concentration (nh ) 5 × 1018 cm−3. Photoluminescence measurements for ZnSe0.7Te0.3 NWs show a dominant emission peaked at 478 nm which is the emission of free exciton.

References

    1. 1)
      • 19. Chang, S.J., Hsiao, C.H., Hung, S.C., et al: ‘Growth of ZnSe1-XTex nanotips and the fabrication of ZnSe1-XTex nanotip-based photodetector’, J. Electrochem. Soc., 2010, 157, (1), pp. K1K4 (doi: 10.1149/1.3246004).
    2. 2)
      • 32. Chadi, D.J.: ‘Doping in ZnSe, ZnTe, MgSe, and MgTe wide-band-gap semiconductors’, Phys. Rev. Lett., 1994, 72, (4), pp. 534537 (doi: 10.1103/PhysRevLett.72.534).
    3. 3)
      • 12. Yu, L., Qu, F., Wu, X.: ‘Facile hydrothermal synthesis of novel ZnO nanocubes’, J. Alloys Compd., 2010, 504, (1), pp. L1L4 (doi: 10.1016/j.jallcom.2010.05.055).
    4. 4)
      • 35. Yim, J.W.L., Grigoropoulos, C.P., Wu, J.: ‘Mismatched alloy nanowires for electronic structure tuning’, Appl. Phys. Lett., 2011, 99, (23), article id: 233111 (doi: 10.1063/1.3666223).
    5. 5)
      • 5. Zhao, J.W., Qin, L.R., Zhang, Y., Hao, Y.H., Guo, Q., Zhang, L.D.: ‘Catalytic growth of cubic phase ZnO nanowires with jagged surface’, Micro Nano Lett., 2010, 5, (5), pp. 336339 (doi: 10.1049/mnl.2010.0126).
    6. 6)
      • 30. Chia, C.-H., Fan, W.-C., Lin, Y.-C., Chou, W.-C.: ‘Radiative recombination of indirect exciton in type-II ZnSeTe/ZnSe multiple quantum wells’, J. Lumin., 2011, 131, (5), pp. 956959 (doi: 10.1016/j.jlumin.2010.12.031).
    7. 7)
      • 20. Tianling Ren, J.Z.: ‘Doping and compensation in II–VI semiconductors’, Comput. Appl. Chem., 1998, 15, (6), pp. 327332.
    8. 8)
      • 31. Adachi, S.: ‘Properties of group-IV, III–V and II–VI semiconductors’ (John Wiley & Sons Ltd, 2005).
    9. 9)
      • 23. Li, S., Jiang, Y., Wu, D., et al: ‘Synthesis and nano-field-effect transistors of P-Type Zn0.3Cd0.7Te nanoribbons’, Mater. Lett., 2011, 65, (12), pp. 17531755 (doi: 10.1016/j.matlet.2011.03.068).
    10. 10)
      • 14. Lei, Y., Wang, J., Qu, F., Li, H., Wu, X.: ‘Facile approach to ZnO nanorods by directly etching zinc substrate’, Micro & Nano Letters, 2012, 7, (5), pp. 485488 (doi: 10.1049/mnl.2012.0067).
    11. 11)
      • 11. Gong, L., Wu, X., Ye, C., Qu, F., An, M.: ‘Aqueous phase approach to ZnO microspindles at low temperature’, J. Alloy. Compd., 2010, 501, (2), pp. 375379 (doi: 10.1016/j.jallcom.2010.04.110).
    12. 12)
      • 18. Fang, X.S., Xiong, S.L., Zhai, T.Y., et al: ‘High-performance blue/ultraviolet-light-sensitive ZnSe-nanobelt photodetectors’, Adv. Mater., 2009, 21, (48), pp. 5016 (doi: 10.1002/adma.200902126).
    13. 13)
      • 16. Zhang, J., Chen, P.C., Shen, G.Z., et al: ‘P-type field-effect transistors of single-crystal zinc telluride nanobelts’, Angew. Chem. Int. Ed., 2008, 47, (49), pp. 94699471 (doi: 10.1002/anie.200804073).
    14. 14)
      • 8. Li, S., Jiang, Y., Wu, D., et al: ‘Synthesis and X-ray responsivity of Zn0.75Cd0.25Te nanoribbons’, Micro Nano Lett., 2011, 6, (8), pp. 624627 (doi: 10.1049/mnl.2011.0305).
    15. 15)
      • 36. El-Nahass, M.M., Khalifa, B.A., ElRahman, A.M.A., ElAriny, R.: ‘Structural and optical properties of ZnSexTe1-X solid solutions in thin-film form’, Appl. Phys. A, Mater., 1996, 63, (1), pp. 8186 (doi: 10.1007/BF01579749).
    16. 16)
      • 1. Wu, D., Jiang, Y., Wang, L., et al: ‘High-performance CdS:P nanoribbon field-effect transistors constructed with high-κ dielectric and top-gate geometry’, Appl. Phys. Lett., 2010, 96, (12), article id: 123118.
    17. 17)
      • 7. Li, S., Jiang, Y., Wang, B., et al: ‘Synthesis of P-type ZnSe nanowires by atmosphere compensating technique’, Micro Nano Lett., 2011, 6, (6), pp. 459462 (doi: 10.1049/mnl.2011.0219).
    18. 18)
      • 9. Su, Q., Li, L., Li, S., Zhao, H.: ‘Field-emission property of ZnSe nanoarrays’, Micro Nano Letters ,2012, 7 (10), pp. 10531055 (doi: 10.1049/mnl.2012.0589).
    19. 19)
      • 38. Cole, H.: ‘Bragg's law and energy sensitive detectors’, J. Appl. Crystallogr., 1970, 3, (5), pp. 405406 (doi: 10.1107/S0021889870006532).
    20. 20)
      • 28. Lee, D., Mysyrowicz, A., Nurmikko, A.V., Fitzpatrick, B.J.: ‘Exciton self-trapping in ZnSe-ZnTe alloys’, Phys. Rev. Lett., 1987, 58, (14), pp. 14751478 (doi: 10.1103/PhysRevLett.58.1475).
    21. 21)
      • 10. Chen, H., Wu, X., Gong, L., Ye, C., Qu, F., Shen, G.: ‘Hydrothermally grown ZnO micro/nanotube arrays and their properties’, Nanoscale Res. Lett., 2009, 5, (3), pp. 570575 (doi: 10.1007/s11671-009-9506-4).
    22. 22)
      • 26. Jacob, A.P., Zhao, Q.X., Willander, M., Yang, C.S., Chou, W.C.: ‘Room temperature luminescence from ZnSe1-XTex (X < 1%) epilayers grown on (001) GaAs’, J. Appl. Phys., 2003, 94, (4), pp. 23372340 (doi: 10.1063/1.1593800).
    23. 23)
      • 6. Qiu, Y., Hu, L.Z., Yu, D.Q., et al: ‘Synthesis of gear-shaped ZnO microwires by chemical vapour deposition’, Micro Nano Lett., 2010, 5, (5), pp. 251253 (doi: 10.1049/mnl.2010.0086).
    24. 24)
      • 25. Li, S., Liu, X., Zhao, H., Tian, D.: ‘Compensating synthesis and electrical properties of P-type Zn0.7Cd0.3Se nanowires’, Mater. Lett., 2012, 83, (15), pp. 165167 (doi: 10.1016/j.matlet.2012.06.016).
    25. 25)
      • 29. Chang, S.J., Chih, S.H., Hsiao, C.H., et al: ‘Growth and photoelectric properties of twinned ZnSe1-XTex nanotips’, IEEE Trans. Nanotechnol., 2011, 10, (3), pp. 379384 (doi: 10.1109/TNANO.2010.2040626).
    26. 26)
      • 24. Li, S., Jiang, Y., Wu, D., et al: ‘Structure and electrical properties of P-type twin ZnTe nanowires’, Appl. Phys. A, Mater. Sci. Process., 2011, 102, (2), pp. 469475 (doi: 10.1007/s00339-010-6242-7).
    27. 27)
      • 3. Liao, Z.M., Liu, K.J., Zhang, J.M., Xu, J., Yu, D.P.: ‘Effect of surface states on electron transport in individual ZnO nanowires’, Phys. Lett. A, 2007, 367, (3), pp. 207210 (doi: 10.1016/j.physleta.2007.03.006).
    28. 28)
      • 13. Yu, L., Qu, F., Wu, X.: ‘Solution synthesis and optimization of ZnO nanowindmills’, Appl. Surf. Sci., 2011, 257, (17), pp. 74327435 (doi: 10.1016/j.apsusc.2011.02.130).
    29. 29)
      • 34. Lin, W., Yang, B.X., Guo, S.P., Elmoumni, A., Fernandez, F., Tamargo, M.C.: ‘Molecular-beam epitaxy growth and nitrogen doping of ZnSe1-XTex alloys grown on InP substrates’, Appl. Phys. Lett., 1999, 75, (17), pp. 26082610 (doi: 10.1063/1.125093).
    30. 30)
      • 33. Naniwae, K., Iwata, H., Yashiki, K.: ‘Molecular beam epitaxial growth and optical properties of lattice-matched MgxZn1-XSeyTe1-Y alloys on INP substrates’, Appl. Phys. Lett., 1999, 74, (26), pp. 39843986 (doi: 10.1063/1.124244).
    31. 31)
      • 4. Wang, Z.L., Song, J.H.: ‘Piezoelectric nanogenerators based on zinc oxide nanowire arrays’, Science, 2006, 312, (5771), pp. 242246 (doi: 10.1126/science.1124005).
    32. 32)
      • 2. Jie, J.S., Zhang, W.J., Bello, I., Lee, C.S., Lee, S.T.: ‘One-dimensional II–VI nanostructures: synthesis, properties and optoelectronic applications’, Nano Today, 2010, 5, (4), pp. 313336 (doi: 10.1016/j.nantod.2010.06.009).
    33. 33)
      • 21. Song, H.S., Zhang, W.J., Yuan, G.D., et al: ‘P-type conduction in arsenic-doped ZnSe nanowires’, Appl. Phys. Lett., 2009, 95, (3), p. 033117 (doi: 10.1063/1.3186359).
    34. 34)
      • 15. Wu, D., Jiang, Y., Zhang, Y., et al: ‘Device structure-dependent field-effect and photoresponse performances of P-type ZnTe:Sb nanoribbons’, J. Mater. Chem., 2012, 22, (13), pp. 62066212 (doi: 10.1039/c2jm16632a).
    35. 35)
      • 22. Yuan, G.D., Zhang, W.J., Zhang, W.F., et al: ‘P-type conduction in nitrogen-doped ZnS nanoribbons’, Appl. Phys. Lett., 2008, 93, (21), p. 213102 (doi: 10.1063/1.3025846).
    36. 36)
      • 37. Denton, A., Ashcroft, N.: ‘Vegard's law’, Phys. Rev. A, 1991, 43, (6), pp. 31613164 (doi: 10.1103/PhysRevA.43.3161).
    37. 37)
      • 39. Yuan, G.D., Zhang, W.J., Jie, J.S., et al: ‘P-type ZnO nanowire arrays’, Nano Lett., 2008, 8, (8), pp. 25912597 (doi: 10.1021/nl073022t).
    38. 38)
      • 17. Li, S.Y., Jiang, Y., Wu, D., et al: ‘Enhanced P-type conductivity of ZnTe nanoribbons by nitrogen doping’, J. Phys. Chem. C, 2010, 114, (17), pp. 79807985 (doi: 10.1021/jp911873j).
    39. 39)
      • 27. Maruyama, T., Hasegawa, T., Komuro, N., et al: ‘Compensation centers in ZnSeTe’, J. Appl. Phys., 1999, 86, (11), pp. 59935999 (doi: 10.1063/1.371645).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0139
Loading

Related content

content/journals/10.1049/mnl.2013.0139
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address