access icon free Hierarchical porous copper materials: fabrication and characterisation

Hierarchical porous copper bulk can be fabricated through chemical dealloying of porous CuAl intermetallics under free corrosion conditions. The obtained precursor porous CuAl intermetallics and as-dealloyed hierarchical porous copper were characterised using X-ray diffraction, a field-emission scanning electron microscope and energy dispersive X-ray spectroscopy. It was found that the hierarchical porous copper can be easily prepared by this method. The dealloying solution will dramatically influence the morphology of the resultant hierarchical porous materials. As a result, trimodal porous copper composite material and bimodal porous copper can be achieved after being dealloyed in NaOH and HCl solutions, respectively. Therefore, the mechanisms of the evolution of hierarchical pores structure are also discussed.

Inspec keywords: composite materials; X-ray chemical analysis; scanning electron microscopy; copper; X-ray diffraction; field emission electron microscopy; porous materials; corrosion; alloying; porosity

Other keywords: HCl solutions; bimodal porous copper; porous intermetallics; energy dispersive X-ray spectroscopy; chemical dealloying; hierarchical porous morphology; trimodal porous copper composite material; hierarchical pores structure; as-dealloyed hierarchical porous copper; free corrosion conditions; NaOH solutions; dealloying solution; field-emission scanning electron microscopy; X-ray diffraction; Cu

Subjects: Electromagnetic radiation spectrometry (chemical analysis); Structure of powders and porous materials; Preparation of metals and alloys (compacts, pseudoalloys)

References

    1. 1)
      • 6. Li, M., Liu, Y., Lu, G.D., Ye, J.W., Li, J., Tu, M.J.: ‘Preparation and dynamic deuterium gas loading of highly porous palladium bulks’, Int. J. Hydrog. Energy, 2007, 32, pp. 50335038 (doi: 10.1016/j.ijhydene.2007.07.035).
    2. 2)
      • 5. Ding, Y., Erlebacher, J.: ‘Nanoporous metals with controlled multimodal pore size distribution’, J. Am. Chem. Soc., 2003, 125, pp. 77727773 (doi: 10.1021/ja035318g).
    3. 3)
      • 10. Gao, H.Y., He, Y.H., Shen, P.Z., et al: ‘Effect of heating rate on pore structure of porous FeAl material’, Powder Metall., 2008, 51, pp. 171175 (doi: 10.1179/174329008X271673).
    4. 4)
      • 4. Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K.: ‘Evolution of nanoporosity in dealloying’, Nature, 2001, 410, pp. 450453 (doi: 10.1038/35068529).
    5. 5)
      • 14. Ying, D.Y., Zhang, D.L.: ‘Solid-state reactions between Cu and Al during mechanical alloying and heat treatment’, J. Alloys Compd., 2000, 311, pp. 275282 (doi: 10.1016/S0925-8388(00)01094-X).
    6. 6)
      • 11. Chen, Y., Schuh, C.A.: ‘Diffusion on grain boundary networks: percolation theory and effective medium approximations’, Acta Mater., 2006, 54, pp. 47094720 (doi: 10.1016/j.actamat.2006.06.011).
    7. 7)
      • 18. Andreasen, G., Nazzarro, M., Ramirez, J., Salvarezza, R.C., Arvia, A.J.: ‘Kinetics of particle coarsening at gold electrode/electrolyte solution interfaces followed by in situ scanning tunneling microscopy’, J. Electrochem. Soc., 1996, 143, pp. 466471 (doi: 10.1149/1.1836466).
    8. 8)
      • 16. Zhao, C.C., Qi, Z., Wang, X.G., Zhang, Z.H.: ‘Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg–Cu alloys’, Corros. Sci., 2009, 51, pp. 21202125 (doi: 10.1016/j.corsci.2009.05.043).
    9. 9)
      • 17. Qian, L.H., Chen, M.W.: ‘Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation’, Appl. Phys. Lett., 2007, 91, pp. 13.
    10. 10)
      • 2. Joo, S.H., Choi, S.J., Oh, I., et al: ‘Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles’, Nature, 2001, 412, pp. 169172 (doi: 10.1038/35084046).
    11. 11)
      • 7. Liu, W.B., Zhang, S.C., Li, N., Zheng, J.W., Xing, Y.L.: ‘A facile one-pot route to fabricate nanoporous copper with controlled hierarchical pore size distributions through chemical dealloying of Al–Cu alloy in an alkaline solution’, Microporous Mesoporous Mater., 2011, 138, pp. 17 (doi: 10.1016/j.micromeso.2010.10.003).
    12. 12)
      • 1. Weissmueller, J.R., Viswanath, N., Kramer, D., Zimmer, P., Wuerschum, R., Gleiter, H.: ‘Charge-induced reversible strain in a metal’, Science, 2003, 300, pp. 312315 (doi: 10.1126/science.1081024).
    13. 13)
      • 19. Tyson, W.R., Miller, W.A.: ‘Surface free energies of solid metals: estimation from liquid surface tension measurements’, Surf. Sci., 1977, 62, pp. 267276 (doi: 10.1016/0039-6028(77)90442-3).
    14. 14)
      • 13. Pugh, D.V., Dursun, A., Corcoran, S.G.: ‘Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25’, J. Mater. Res., 2003, 18, pp. 216 (doi: 10.1557/JMR.2003.0030).
    15. 15)
      • 9. Yin, Y.D., Rioux, R.M., Erdonmez, C.K., Hughes, S., Somorjai, G.A., Alivisatos, A.P.: ‘Formation of hollow nanocrystals through the nanoscale Kirkendall effect’, Science, 2004, 30430, pp. 711714 (doi: 10.1126/science.1096566).
    16. 16)
      • 12. Erlebacher, J.: ‘An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior’, J. Electrochem. Soc., 2004, 151, pp. C614626 (doi: 10.1149/1.1784820).
    17. 17)
      • 15. Zhang, Z.H., Wang, Y., Wang, X., Qi, Z., Ji, H., Zhao, C.: ‘Formation of ultrafine nanoporous gold related to surface diffusion of gold adatoms during dealloying of Al2Au in an alkaline solution’, Scr. Mater., 2010, 62, pp. 137140 (doi: 10.1016/j.scriptamat.2009.10.018).
    18. 18)
      • 8. He, Y.H., Jiang, Y., Xu, N.P., Zou, J., Huang, B.Y., et al: ‘Fabrication of Ti–Al micro/manometer – sized porous alloys through the Kirkendall effect’, Adv. Mater., 2007, 19, pp. 21022016 (doi: 10.1002/adma.200602398).
    19. 19)
      • 3. Li, W.C., Balk, T.J.: ‘Achieving finer pores and ligaments in nanoporous palladium–nickel thin films’, Scr. Mater., 2010, 62, pp. 167169 (doi: 10.1016/j.scriptamat.2009.10.009).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0113
Loading

Related content

content/journals/10.1049/mnl.2013.0113
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading