access icon free Fabrication of a substrate for Ag-nanorod metal-enhanced fluorescence using the oblique angle deposition process

Metal-enhanced fluorescence (MEF) is a powerful technology to improve the sensitivity of fluorescence analysis by allowing fluorophores to interact with enhanced electromagnetic fields generated by the localised surface plasmon resonance effects of metallic nanostructures. To apply MEF technology to disposable DNA or protein microarray analysis, metallic nanostructures need to be fabricated on the full area of a glass slide at low cost. In this reported work an oblique angle deposition process was used to fabricate Ag nanorods on the whole area of a 25 × 75 mm2 glass slide to serve as an inexpensive and large-area MEF substrate. To examine the feasibility of the proposed substrate and maximise signal enhancement, Ag nanorods with different lengths were deposited on glass slides. Different concentrations of streptavidin-conjugated Cy5 in phosphate buffered saline were spotted onto the Ag nanorods and bare glass substrates, and the fluorescence signals were measured and compared. Longer Ag nanorods improved the fluorescence enhancement factor because of a higher surface plasmon resonance effect and the large surface area of the nanostructure with a high aspect ratio. A maximum enhancement factor of −23 was obtained from Ag nanorods that were 1000 nm long with comparable uniformity with the glass substrate.

Inspec keywords: silver; surface plasmon resonance; proteins; fluorescence; nanofabrication; nanorods; DNA; substrates

Other keywords: SiO2; DNA; metallic nanostructures; enhanced electromagnetic fields; streptavidin-conjugated Cy5; glass slide; localised surface plasmon resonance; protein microarray analysis; MEF technology; oblique angle deposition; fluorophores; silver-nanorod metal-enhanced fluorescence; substrate; phosphate buffered saline; Ag

Subjects: Low-dimensional structures: growth, structure and nonelectronic properties; Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Methods of nanofabrication and processing; Collective excitations (surface states); Photoluminescence in other inorganic materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials

References

    1. 1)
      • 14. Kim, S., Zhang, W., Cunningham, B.T.: ‘Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy’, Opt. Express, 2010, 18, pp. 43004309 (doi: 10.1364/OE.18.004300).
    2. 2)
      • 11. Liu, Y.-J., Chu, H.Y., Zhao, Y.-P.: ‘Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations’, J. Phys. Chem. C, 2010, 114, pp. 81768183 (doi: 10.1021/jp1001644).
    3. 3)
      • 9. Geddes, C.D., Parfenov, A., Roll, D., Fang, J., Lakowicz, J.R.: ‘Electrochemical and laser deposition of silver for use in metal enhanced fluorescence’, Langmuir, 2003, 19, pp. 62366241 (doi: 10.1021/la020930r).
    4. 4)
      • 10. Chaney, S.B., Shanmukh, S., Dluhy, R.A., Zhao, Y.-P.: ‘Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates’, Appl. Phys. Lett., 2005, 87, p. 031908 (doi: 10.1063/1.1988980).
    5. 5)
      • 1. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: ‘Quantitative monitoring of gene expression patterns with a complementary DNA microarray’, Science, 1995, 270, pp. 467470 (doi: 10.1126/science.270.5235.467).
    6. 6)
      • 12. Driskell, J.D., Shanmukh, S., Liu, Y., et al: ‘The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates’, J. Phys. Chem. C, 2008, 112, pp. 895901 (doi: 10.1021/jp075288u).
    7. 7)
      • 3. Canales, R.D.: ‘Evaluation of DNA microarray results with quantitative gene expression platforms’, Nat. Biotechnol., 2006, 24, pp. 11151122 (doi: 10.1038/nbt1236).
    8. 8)
      • 2. Emili, A.Q., Cagney, G.: ‘Large-scale functional analysis using peptide or protein arrays’, Nat. Biotechnol., 2000, 18, pp. 393397 (doi: 10.1038/74442).
    9. 9)
      • 8. Aslan, K., Lakowicz, J.R., Geddes, C.D.: ‘Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence’, J. Phys. Chem. B, 2005, 109, pp. 62476251 (doi: 10.1021/jp044235z).
    10. 10)
      • 13. Fu, J., Cao, Z., Yobas, L.: ‘Localized oblique-angle deposition: Ag nanorods on microstructured surfaces and their SERS characteristics’, Nanotechnology, 2011, 22, p. 505302 (doi: 10.1088/0957-4484/22/50/505302).
    11. 11)
      • 15. Kim, S., Zhang, W., Cunningham, B.: ‘Photonic crystals with SiO2-Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy’, Appl. Phys. Lett., 2008, 93, p. 143112 (doi: 10.1063/1.2998695).
    12. 12)
      • 7. Pompa, P.P., Martiradonna, L., Della Torre, A., et al: ‘Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control’, Nat. Nanotechnol., 2006, 1, pp. 126130 (doi: 10.1038/nnano.2006.93).
    13. 13)
      • 5. Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: ‘The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment’, J. Phys. Chem. B, 2003, 107, pp. 668677 (doi: 10.1021/jp026731y).
    14. 14)
      • 4. Hayakawa, T., Selvan, S.T., Nogami, M.: ‘Field enhancement effect of small Ag particles on the fluorescence from Eu(3 + )-doped SiO2 glass’, Appl. Phys. Lett., 1999, 74, pp. 15131515 (doi: 10.1063/1.123600).
    15. 15)
      • 6. Lakowicz, J.R.: ‘Plasmonics in biology and plasmon-controlled fluorescence’, Plasmonics, 2006, 1, pp. 533 (doi: 10.1007/s11468-005-9002-3).
    16. 16)
      • 16. Jen, Y.-J., Hsu, W.-L., Yu, C.-W.: ‘Optical properties of silver nanorod arrays prepared by oblique angle deposition’, Proc. SPIE, 7041, 2008, p. 704110 (doi: 10.1117/12.795686).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0030
Loading

Related content

content/journals/10.1049/mnl.2013.0030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading