http://iet.metastore.ingenta.com
1887

Size-dependent photoluminescence in silicon nanostructures: quantum confinement effect

Size-dependent photoluminescence in silicon nanostructures: quantum confinement effect

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Visible photoluminescence (PL) from laser-etched silicon nanostructures has been analysed. A systematic size dependence study of PL from silicon nanostructures has been performed. The PL from these structures is attributed to the quantum confinement effect. Different quantum confinement models have been used for PL and Raman lineshape fitting to calculate the mean size and size distribution of silicon nanostructures and the results are comparatively studied. Calculated values of oscillator strength and radiative lifetime show that PL is due to radiative recombination of confined excitons.

References

    1. 1)
      • 1. Weiss, S.M., Fauchet, P.M.: ‘Porous silicon one-dimensional photonic crystals for optical signal modulation’, IEEE J. Sel. Top. Quantum Electron., 2006, 12, pp. 15141519 (doi: 10.1109/JSTQE.2006.884083).
    2. 2)
      • 2. Park, J., Gu, L., Maltzahn, G., Ruoslahti, E., Bhatia, S.N., Sailor, M.J.: ‘Biodegradable luminescent porous silicon nanoparticles for in vivo applications’, Nature Mater., 2009, 8, pp. 331336 (doi: 10.1038/nmat2398).
    3. 3)
      • 3. Kerr, M.J., Cuevas, A.: ‘General parameterization of Auger recombination in crystalline silicon’, J. Appl. Phys., 2002, 91, pp. 24732480 (doi: 10.1063/1.1432476).
    4. 4)
      • 4. Schroder, D.K.: ‘Semiconductor material and device characterization’ (Wiley-Interscience, Hoboken, Canada, 2006).
    5. 5)
      • 5. Canham, L.T.: ‘Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers’, Appl. Phys. Lett., 1990, 57, pp. 10461048 (doi: 10.1063/1.103561).
    6. 6)
      • 6. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., Fauchet, P.M.: ‘Silicon-based visible light-emitting devices integrated into microelectronic circuits’, Nature, 1996, 384, pp. 338341 (doi: 10.1038/384338a0).
    7. 7)
      • 7. Wilson, W.L., Szajowski, P.F., Brus, L.E.: ‘Quantum confinement in size-selected, surface-oxidized silicon nanocrystals’, Science, 1993, 262, pp. 12421244 (doi: 10.1126/science.262.5137.1242).
    8. 8)
      • 8. Lu, Z.H., Lockwood, D.J., Baribeau, J.M.: ‘Quantum confinement and light emission in SiO2/Si superlattices’, Nature, 1995, 378, pp. 258260 (doi: 10.1038/378258a0).
    9. 9)
      • 9. Nassiopoulos, A.G., Grigoropoulos, S., Papadimitriou, D.: ‘Electroluminescent device based on silicon nanopillars’, Appl. Phys. Lett., 1996, 69, pp. 22672269 (doi: 10.1063/1.117529).
    10. 10)
      • 10. Tishler, M.A., Collins, R.T., Stathis, J.H., Tsang, J.C.: ‘Luminescence degradation in porous silicon’, Appl. Phys. Lett., 1992, 60, pp. 639641 (doi: 10.1063/1.106578).
    11. 11)
      • 11. Cullis, A.G., Canham, L.T.: ‘Visible light emission due to quantum size effects in highly porous crystalline silicon’, Nature, 1991, 353, pp. 335338 (doi: 10.1038/353335a0).
    12. 12)
      • 12. Ray, M., Bandyopadhyay, N.R., Ghanta, U., Klie, R.F., Pramanick, A.K.: ‘Temperature dependent photoluminescence from porous silicon nanostructures: quantum confinement and oxide related transitions’, J. Appl. Phys., 2011, 110, p. 094309 (doi: 10.1063/1.3657771).
    13. 13)
      • 13. Ding, W., Zheng, J., Qi, W., Yu, W., Fu, G.: ‘Dependence of the photoluminescence from silicon nanostructures on the size of silicon nanoparticles’, Proc. SPIE, 2008, 7135, p. 713508 (doi: 10.1117/12.802282).
    14. 14)
      • 14. Estes, M.J., Moddel, G.: ‘Luminescence from amorphous silicon nanostructures’, Phys. Rev. B, 1996, 54, pp. 1463313642 (doi: 10.1103/PhysRevB.54.14633).
    15. 15)
      • 15. Kumar, R., Mavi, H.S., Shukla, A.K.: ‘Macro and microsurface morphology reconstructions during laser-induced etching of silicon’, Micron, 2008, 39, pp. 287293 (doi: 10.1016/j.micron.2007.04.005).
    16. 16)
      • 16. Campbell, I.H., Fauchet, P.H.: ‘The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors’, Solid State Commun., 1986, 58, pp. 739741 (doi: 10.1016/0038-1098(86)90513-2).
    17. 17)
      • 17. Shukla, A.K., Kumar, V.: ‘Low-frequency Raman scattering from silicon nanostructures’, J. Appl. Phys., 2011, 110, p. 064317 (doi: 10.1063/1.3633235).
    18. 18)
      • 18. Mavi, H.S., Shukla, A.K., Kumar, R., Rath, S., Joshi, B., Islam, S.S.: ‘Quantum confinement effects in silicon nanocrystals produced by laser-induced etching and CW laser annealing’, Semicond. Sci. Technol., 2006, 21, pp. 16271632 (doi: 10.1088/0268-1242/21/12/021).
    19. 19)
      • 19. Wan, Q., Wang, T.H., Liu, W.L., Lin, C.L.: ‘Ultra-high-density Ge quantumdots on insulator prepared by high-vacuum electron-beam evaporation’, J. Cryst. Growth, 2003, 249, pp. 2327 (doi: 10.1016/S0022-0248(02)02071-7).
    20. 20)
      • 20. Maeda, Y.: ‘Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism’, Phys. Rev. B, 1995, 51, pp. 16581670 (doi: 10.1103/PhysRevB.51.1658).
    21. 21)
      • 21. Wu, X.M., Lu, M.J., Yao, W.G.: ‘Structure and optical properties of SiO2 films containing Ge nanocrystallites’, Surf. Coat. Technol., 2002, 161, pp. 9295 (doi: 10.1016/S0257-8972(02)00343-2).
    22. 22)
      • 22. Xu, Z.Y., Gal, M., Gross, M.: ‘Photoluminescence studies on porous silicon’, Appl. Phys. Lett., 1992, 60, pp. 13751377 (doi: 10.1063/1.107295).
    23. 23)
      • 23. Yorikawa, H., Muramatsu, S.: ‘Logarithmic normal distribution of particle size from a luminescence line-shape analysis in porous silicon’, Appl. Phys. Lett., 1997, 71, pp. 644646 (doi: 10.1063/1.119816).
    24. 24)
      • 24. Trwoga, P.F., Kenyon, A.J., Pitt, C.W.: ‘Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters’, J. Appl. Phys., 1998, 83, pp. 37893794 (doi: 10.1063/1.366608).
    25. 25)
      • 25. Weissker, H.-Ch., Furthmüller, J., Bechstedt, F.: ‘Structure- and spin-dependent excitation energies and lifetimes of Si and Ge nanocrystals from ab initio calculations’, Phys. Rev. B, 2004, 69, p. 115310 (doi: 10.1103/PhysRevB.69.115310).
    26. 26)
      • 26. Henry, C.: ‘Lifetimes of bound excitons in CdS’, Phys. Rev. B, 1970, 1, pp. 16281634 (doi: 10.1103/PhysRevB.1.1628).
    27. 27)
      • 27. Sanders, G.D., Chang, Y.: ‘Optical properties of free-standing silicon quantum wires’, Appl. Phys. Lett., 1992, 60, pp. 25252527 (doi: 10.1063/1.106927).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2012.0910
Loading

Related content

content/journals/10.1049/mnl.2012.0910
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address