access icon free Preparation of in-situ surface-modified nanosilica and its application in separating oil from water

A report is presented on the preparation of surface-functionalised nanosilica from silicon tetrachloride (SiCl4, one of the major by-products in the polycrystalline silicon industry) by in-situ surface modification in aqueous solution. The approach uses both SiCl4 and sodium metasilicate as the silicon sources to generate nanosilica, whereas the proportion of sodium metasilicate and SiCl4 is adjusted to control the pH value of the reaction system. In this way, desired SiO2 nanoparticles were in-situ surface-modified by hexamethyldisilazane as soon as they were generated in the reaction solution, which makes it feasible to prevent the severe aggregation of nanosilica that often happens during the hydrolytic process. The obtained nanosilica with uniform particle size distribution (mean diameter 35–40 nm) shows superhydrophobicity (a water contact angle of 165°) and excellent organic dispersibility. Thanks to the low cost of raw materials as well as the superhydrophobicity and lipophilicity of as-prepared nanosilica, its application for improving the selective penetration of oil is primarily investigated. The result shows that quartz sand modified by as-prepared nanosilica can separate diesel oil from water successfully, which could be significant for improving crude oil recovery efficiency.

Inspec keywords: hydrophobicity; aggregation; separation; pH; particle size; nanofabrication; surface treatment; nanoparticles; silicon compounds; oils

Other keywords: reaction system pH; uniform particle size distribution; surface modification; organic dispersibility; nanosilica lipophilicity; silicon tetrachloride; surface-functionalised nanosilica preparation; hydrolytic process; oil selective penetration; hexamethyldisilazane; silica nanoparticles; diesel oil; size 35 nm to 40 nm; silicon sources; SiO2; crude oil recovery efficiency; quartz sand; nanosilica severe aggregation; aqueous solution; reaction solution; nanosilica superhydrophobicity; surface-modified nanosilica preparation; sodium metasilicate

Subjects: Methods of nanofabrication and processing; Nanofabrication; Fluid surfaces and interfaces with fluids; Corrosion, oxidation, etching, and other surface treatments; Surface treatment and coating techniques; Electrochemistry and electrophoresis; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Industrial processes; Engineering materials

References

    1. 1)
      • 13. Feng, X., Feng, L., Jin, M., Zhai, J., Jiang, L., Zhu, D.: ‘Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films’, J. Am. Chem. Soc., 2004, 126, pp. 6263.
    2. 2)
      • 8. Wang, Y.Q., Li, Y.P., Zhang, R.Y., Huang, L., He, W.W.: ‘Synthesis and characterization of nanosilica/polyacrylate composite latex’, Polym. Compos., 2006, 27, pp. 282288.
    3. 3)
      • 4. Uchino, T., Aboshi, A., Kohara, S., Ohishi, Y., Sakashita, M., Aoki, K.: ‘Microscopic structure of nanometer-sized silica particles’, Phys. Rev. B, 2004, 69, pp. 155409-1155409-8.
    4. 4)
      • 14. Li, X.H., Cao, Z., Liu, F., Zhang, Z.J., Dang, H.: ‘A novel method of preparation of superhydrophobic nanosilica in aqueous solution’, Chem. Lett., 2006, 35, pp. 9495.
    5. 5)
      • 7. Heley, J.R., Jackson, D., James, P.F.: ‘The production of ultrafine silica powders from silicon tetrachloride: control of the primary particle size’, J. Sol-Gel. Sci. Technol., 1997, 8, pp. 177181.
    6. 6)
      • 6. Heley, J., Jackson, D., James, P.: ‘Fine low density silica powders prepared by supercritical drying of gels derived from silicon tetrachloride’, J. Non-Cryst. Solids, 1995, 186, pp. 3036.
    7. 7)
      • 10. Ignatov, S.K., Sennikov, P.G., Razuvaev, A.G., Chuprov, L.A., Schrems, O., Ault, B.S.: ‘Theoretical study of the reaction mechanism and role of water clusters in the gas-phase hydrolysis of SiCl4’, J. Phys. Chem. A, 2003, 107, pp. 87058713.
    8. 8)
      • 16. Zheng, N., Liu, K., Li, X.H., Zhang, Z.J.: ‘Preparation of super-hydrophobic nano-silica aqueous dispersion and study of its application for water resistance reduction at low permeability reservoir’, Micro Nano Lett., 2012, 7, pp. 526528.
    9. 9)
      • 15. Li, S., Li, H., Wang, X., Song, Y., Liu, Y., Jiang, L., et al.: ‘Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes’, J. Phys. Chem. B, 2002, 106, pp. 92749276.
    10. 10)
      • 12. Zhang, Y., Zhang, X., Ye, H., Xiao, B., Yan, L., Jiang, B.: ‘A simple route to prepare crack-free thick antireflective silica coatings with improved antireflective stability’, Mater. Lett., 2012, 69, pp. 8688.
    11. 11)
      • 17. Wang, K.L., Liang, S.C., Wang, C.C.: ‘Research of improving water injection effect by using active SiO2 nano-powder in the low-permeability oilfield’, Adv. Mater. Res., 2010, 92, pp. 202207.
    12. 12)
      • 2. Zhao, Y., Pan, G.: ‘Manufacture of high purity low hydroxyl synthetic vitreous silica from industrial by-product silicon tetrachloride’, J. Non-Cryst. Solids, 1982, 52, pp. 521529.
    13. 13)
      • 5. Liu, C.C., Maciel, G.E.: ‘The fumed silica surface: a study by NMR’, J. Am. Chem. Soc., 1996, 118, pp. 51035119.
    14. 14)
      • 11. Zhang, Z.J., Zhang, J., Xue, Q.J.: ‘Synthesis and characterization of a molybdenum disulfide nanocluster’, J. Phys. Chem., 1994, 98, pp. 1297312977.
    15. 15)
      • 1. Wang, Y.F., Nie, L.J., Xiang, Z.K., Song, X.F.: ‘Preparation of high purity low hydroxyl synthetic fused silica glass’, Adv. Mater. Res., 2011, 287–290, pp. 276280.
    16. 16)
      • 9. Zou, H., Wu, S., Shen, J.: ‘Polymer/silica nanocomposites: preparation, characterization, properties, and applications’, Chem. Rev., 2008, 108, pp. 38933957.
    17. 17)
      • 3. Ivanov, V.M., Trubitsin, Y.V.: ‘Approaches to hydrogenation of silicon tetrachloride in polysilicon manufacture’, Russ. Microelectron., 2011, 40, pp. 559561.
    18. 18)
      • N. Zheng , K. Liu , X.H. Li , Z.J. Zhang . Preparation of super-hydrophobic nano-silica aqueous dispersion and study of its application for water resistance reduction at low permeability reservoir. Micro Nano Lett. , 526 - 528
    19. 19)
      • H. Zou , S. Wu , J. Shen . Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. , 3893 - 3957
    20. 20)
      • Y. Zhao , G. Pan . Manufacture of high purity low hydroxyl synthetic vitreous silica from industrial by-product silicon tetrachloride. J. Non-Cryst. Solids , 521 - 529
    21. 21)
      • X.H. Li , Z. Cao , F. Liu , Z.J. Zhang , H. Dang . A novel method of preparation of superhydrophobic nanosilica in aqueous solution. Chem. Lett. , 94 - 95
    22. 22)
      • Y. Zhang , X. Zhang , H. Ye , B. Xiao , L. Yan , B. Jiang . A simple route to prepare crack-free thick antireflective silica coatings with improved antireflective stability. Mater. Lett. , 86 - 88
    23. 23)
      • C.C. Liu , G.E. Maciel . The fumed silica surface: a study by NMR. J. Am. Chem. Soc. , 5103 - 5119
    24. 24)
      • S.K. Ignatov , P.G. Sennikov , A.G. Razuvaev , L.A. Chuprov , O. Schrems , B.S. Ault . Theoretical study of the reaction mechanism and role of water clusters in the gas-phase hydrolysis of SiCl4. J. Phys. Chem. A , 8705 - 8713
    25. 25)
      • X. Feng , L. Feng , M. Jin , J. Zhai , L. Jiang , D. Zhu . Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. , 62 - 63
    26. 26)
      • T. Uchino , A. Aboshi , S. Kohara , Y. Ohishi , M. Sakashita , K. Aoki . Microscopic structure of nanometer-sized silica particles. Phys. Rev. B , 155409 - 155401
    27. 27)
      • J. Heley , D. Jackson , P. James . Fine low density silica powders prepared by supercritical drying of gels derived from silicon tetrachloride. J. Non-Cryst. Solids , 30 - 36
    28. 28)
      • V.M. Ivanov , Y.V. Trubitsin . Approaches to hydrogenation of silicon tetrachloride in polysilicon manufacture. Russ. Microelectron. , 559 - 561
    29. 29)
      • S. Li , H. Li , X. Wang , Y. Song , Y. Liu , L. Jiang . Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes. J. Phys. Chem. B , 9274 - 9276
    30. 30)
      • Y.Q. Wang , Y.P. Li , R.Y. Zhang , L. Huang , W.W. He . Synthesis and characterization of nanosilica/polyacrylate composite latex. Polym. Compos. , 282 - 288
    31. 31)
      • Z.J. Zhang , J. Zhang , Q.J. Xue . Synthesis and characterization of a molybdenum disulfide nanocluster. J. Phys. Chem. , 12973 - 12977
    32. 32)
      • Y.F. Wang , L.J. Nie , Z.K. Xiang , X.F. Song . Preparation of high purity low hydroxyl synthetic fused silica glass. Adv. Mater. Res. , 276 - 280
    33. 33)
      • J.R. Heley , D. Jackson , P.F. James . The production of ultrafine silica powders from silicon tetrachloride: control of the primary particle size. J. Sol-Gel. Sci. Technol. , 177 - 181
    34. 34)
      • K.L. Wang , S.C. Liang , C.C. Wang . Research of improving water injection effect by using active SiO2 nano-powder in the low-permeability oilfield. Adv. Mater. Res. , 202 - 207
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2012.0887
Loading

Related content

content/journals/10.1049/mnl.2012.0887
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading