access icon free Morphological, structural and optical properties of Al-doped ZnO nanosheet arrays influenced by pulsed electromagnetic field

High-quality Al-doped ZnO nanosheet arrays have been prepared by hydrothermal methods assisted with the pulsed electromagnetic field (PEMF). These effects of PEMF on the morphology and structural properties of Al-doped ZnO nanosheet arrays were studied in detail. Results showed Al-doped ZnO nanosheet arrays with PEMF had better orientation, more density, a greater ratio of diameter to thickness and stronger ultraviolet emission peak than those without PEMF. Finally, a possible mechanism of PEMF acting on Al-doped ZnO nanosheet arrays is proposed.

Inspec keywords: semiconductor growth; photoluminescence; II-VI semiconductors; sheet materials; zinc compounds; electromagnetic fields; nanostructured materials; wide band gap semiconductors; nanofabrication

Other keywords: morphological properties; photoluminescence; optical properties; ZnO:Al; ultraviolet emission peak; hydrothermal method; high-quality nanosheet arrays; structural properties; pulsed electromagnetic field

Subjects: Methods of nanofabrication and processing; Luminescent materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Photoluminescence in II-VI and III-V semiconductors; Optical properties of II-VI and III-V semiconductors (thin films, low-dimensional and nanoscale structures); II-VI and III-V semiconductors; Nanometre-scale semiconductor fabrication technology

References

    1. 1)
      • 15. Wang, J.Z., Cang, D.Q.: CHN patent, CN98100543.8, 1998.
    2. 2)
      • 21. Vanheusden, K., Warren, W.L., Seager, C.H.: ‘Mechanisms behind green photoluminescence in assemblies of nano-ZnO particles/silica aerogels’, J. Appl. Phys., 1996, 79, (10), pp. 79837990 (doi: 10.1063/1.362349).
    3. 3)
      • 5. Qin, Z., Huang, Y., Liao, Q.L.: ‘Stability improvement of the ZnO nanowire array electrode modified with Al2O3 andSiO2 for dye-sensitized solar cells’, Mater. Lett., 2012, 70, pp. 177180 (doi: 10.1016/j.matlet.2011.12.017).
    4. 4)
      • 12. Greene, L.E., Law, M., Goldberger, J.: ‘Low-temperature wafer-scale production of ZnO nanowire arrays’, Chem. Int. Ed., 2003, 42, (26), pp. 30313034 (doi: 10.1002/anie.200351461).
    5. 5)
      • 2. Grätzel, M.: ‘Photoelectrochemical cells’, Nature, 2001, 414, (15), pp. 338342 (doi: 10.1038/35104607).
    6. 6)
      • 20. Look, D.C., Reynolds, C., Litton, C.W.: ‘Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy’, Appl. Phys. Lett., 2002, 81, (10), pp. 18301832 (doi: 10.1063/1.1504875).
    7. 7)
      • 11. Vayssieres, L.: ‘Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions’, Adv. Mater., 2003, 15, (5), pp. 464466 (doi: 10.1002/adma.200390108).
    8. 8)
      • 7. Tan, W., Yin, X., Zhou, X.: ‘Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells’, Electrochim. Acta, 2009, 54, (19), pp. 44674472 (doi: 10.1016/j.electacta.2009.03.037).
    9. 9)
      • 1. Grätzel, M.: ‘The advent of mesoscopic injection solar cells prog’, Photovolt., Res. Appl., 2006, 14, (5), pp. 429442 (doi: 10.1002/pip.712).
    10. 10)
      • 22. Li, F., Jiang, Y., Hu, L.: ‘Luminescence properties of a Tb3+ activated long after glow phosphor’, J. Alloys Compd., 2009, 474, (1–2), p. 531 (doi: 10.1016/j.jallcom.2008.06.149).
    11. 11)
      • 19. Cheng, J.P., Zhang, X.B., Luo, Z.Q.: ‘Oriented growth of ZnO nanostructures on Si and Al substrates’, Surf. Coat. Technol., 2008, 202, (19), pp. 46814686 (doi: 10.1016/j.surfcoat.2008.03.032).
    12. 12)
      • 8. Longo, C.D., Freitas, J.L., Paoli, M.D.: ‘Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte’, J. Photochem. Photobiol. A, Chem., 2003, 159, (1), pp. 3339 (doi: 10.1016/S1010-6030(03)00106-0).
    13. 13)
      • 4. Aruna, S.T., Tirosh, S., Zaban, A.: ‘Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers’, J. Mater. Chem., 2000, 10, (10), pp. 23882391 (doi: 10.1039/b001718n).
    14. 14)
      • 16. Qin, Z., Liao, Q.L., Huang, Y.H.: ‘Effect of hydrothermal reaction temperature on growth, photoluminescence and photoelectrochemical properties of ZnO nanorod arrays’, Mater. Chem. Phys., 2010, 123, (2–3), pp. 811815 (doi: 10.1016/j.matchemphys.2010.05.065).
    15. 15)
      • 18. Li, H.J., Shi, E.W., Zhong, W.Z.: ‘Theoretical model of anionic coordination po1yhedron growth units and crystal morphology’, J. Synth. Crys., 1999, 28, (2), pp. 117125.
    16. 16)
      • 13. Sepulveda-Guzmana, S., Reeja-Jayanc, B., Revue de la, E.: ‘Synthesis of assembled ZnO structures by precipitation method in aqueous media’, Mater. Chem. Phys., 2009, 115, (1), pp. 172178 (doi: 10.1016/j.matchemphys.2008.11.030).
    17. 17)
      • 6. Qin, Z., Huang, Y., Qi, J.: ‘Surface destruction and performance reduction of the ZnO nanowire arrays electrode in dye sensitization process’, Mater. Lett., 2011, 65, (23–24), pp. 35063508 (doi: 10.1016/j.matlet.2011.07.100).
    18. 18)
      • 23. Alim, K.A., Fonoberov, V.A., Balandin, A.A.: ‘Origin of the optical phonon frequency shifts in ZnO quantum dots’, Appl. Phys. Lett., 2005, 86, (5), pp. 053103-1053103-3 (doi: 10.1063/1.1861509).
    19. 19)
      • 10. Greene, L., Law, M., Tan, D.H.: ‘General route to vertical ZnO nanowire arrays using textured ZnO seeds’, Nano Lett., 2005, 5, (7), pp. 12311236 (doi: 10.1021/nl050788p).
    20. 20)
      • 17. Fonoberov, V.A., Alim, K.A., Balandin, A.A.: ‘Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals’, Phys. Rev. B, 2006, 73, (16), pp. 165317-1165317-9 (doi: 10.1103/PhysRevB.73.165317).
    21. 21)
      • 14. Du, H.L., Wang, J.Z., Wang, B.: ‘Preparation of cobalt oxalate powders with the presence of a pulsed electromagnetic field’, Powder Technol., 2010, 199, (2), pp. 149153 (doi: 10.1016/j.powtec.2009.12.015).
    22. 22)
      • 9. Alim, K.A., Fonoberov, V.A., Shamsa, M.: ‘Micro-Raman investigation of optical phonons in ZnO nanocrystals’, J. Appl. Phys., 2005, 97, (12), pp. 124313-1–124313-3 (doi: 10.1063/1.1944222).
    23. 23)
      • 3. Grätzel, M.: ‘Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells’, J. Photochem. Photobiol. A, Chem., 2004, 164, (3), pp. 314 (doi: 10.1016/j.jphotochem.2004.02.023).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2012.0871
Loading

Related content

content/journals/10.1049/mnl.2012.0871
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading