Rayleigh-instability-driven dewetting of thin Au and Ag films on indium–tin-oxide surface under nanosecond laser irradiations

Rayleigh-instability-driven dewetting of thin Au and Ag films on indium–tin-oxide surface under nanosecond laser irradiations

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Investigations have been carried out on laser-beam-induced nanoparticle (NP) formation in thin (5 nm) Au and Ag films on indium–tin-oxide substrate. After the irradiation the films were observed to break-up into NPs through a dewetting mechanism. This mechanism was investigated as a Rayleigh-instability-driven process. In fact, for each used laser fluence, the resulting Au and Ag NPs' mean size and surface-to-surface mean distance were quantified and correlated between them in the framework of the Rayleigh-instability theory showing an excellent agreement.


    1. 1)
      • 1. Schmid, G. (Ed.): ‘Nanoparticles’ (Wiley-VCH, 2004).
    2. 2)
      • 2. Yu, L.W., Chen, K.J., Song, J., et al: ‘New self limiting assembly model for Si quantum rings on Si(100)’, Phys. Rev. Lett., 2007, 98, p. 166102 (doi: 10.1103/PhysRevLett.98.166102).
    3. 3)
      • 3. Maier, S.A., Kik, P.G., Atwater, H.A., et al: ‘Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides’, Nat. Mater., 2003, 2, pp. 229232 (doi: 10.1038/nmat852).
    4. 4)
      • 4. Mitsui, K., Handa, Y., Kajikawa, K.: ‘Optical fiber affinity biosensor based on localized surface plasmon resonance’, Appl. Phys. Lett., 2004, 85, pp. 42314233 (doi: 10.1063/1.1812583).
    5. 5)
      • 5. Aizpurua, J., Hanarp, P., Sutherland, D.S., Käll, M., Bryant, G.W., Garcìa de Abajo, F.J.: ‘Optical properties of gold nanorings’, Phys. Rev. Lett., 2003, 90, p. 057401 (doi: 10.1103/PhysRevLett.90.057401).
    6. 6)
      • 6. Bischof, J., Scherer, D., Herminghaus, S., Leiderer, P.: ‘Dewetting modes of thin metallic films: nucleation of holes and spinodal dewetting’, Phys. Rev. Lett., 1996, 77, pp. 15361539 (doi: 10.1103/PhysRevLett.77.1536).
    7. 7)
      • 7. Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M., Schlagowski, S.: ‘Spinodal dewetting in liquid crystal and liquid metal films’, Science, 1998, 282, pp. 916919 (doi: 10.1126/science.282.5390.916).
    8. 8)
      • 8. Boneberg, J., Habenicht, A., Benner, D., et al: ‘Jumping nanodroplets: a new route towards metallic nano-particles’, Appl. Phys. A, 2008, 93, pp. 415419 (doi: 10.1007/s00339-008-4780-z).
    9. 9)
      • 9. Henley, S.J., Carrey, J.D., Silva, S.R.P.: ‘Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films’, Phys. Rev. B, 2005, 72, p. 195408 (doi: 10.1103/PhysRevB.72.195408).
    10. 10)
      • 10. Henley, S.J., Carrey, J.D., Silva, S.R.P.: ‘Laser-nanostructured Ag films as substrates for surface-enhanced Raman spectroscopy’, Appl. Phys. Lett., 2006, 88, p. 081904 (doi: 10.1063/1.2178387).
    11. 11)
      • 11. Favazza, C., Trice, J., Krishna, H., Kalayanaraman, R., Sureshkumar, R.: ‘Laser-induced short- and long-range orderings of Co nanoparticles on SiO2’, Appl. Phys. Lett., 2006, 88, p. 153118 (doi: 10.1063/1.2195113).
    12. 12)
      • 12. Longstreth-Spoor, L., Trice, J., Zhang, C., Kalyanaraman, R.: ‘Nanostructure and microstructure of laser-interference-induced dynamic patterning of Co on Si’, J. Phys. D, 2006, 39, pp. 51495159 (doi: 10.1088/0022-3727/39/24/009).
    13. 13)
      • 13. Favazza, C., Kalyanaraman, R., Sureshkumar, R.: ‘Robust nanopatterning by laser-induced dewetting of metal nanofilms’, Nanotechnology, 2006, 17, p. 4229 (doi: 10.1088/0957-4484/17/16/038).
    14. 14)
      • 14. Trice, J., Thomas, D., Favazza, C., Sureshkumar, R., Kalyanaraman, R.: ‘Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments’, Phys. Rev. B, 2007, 75, p. 235439 (doi: 10.1103/PhysRevB.75.235439).
    15. 15)
      • 15. Favazza, C., Trice, J., Kalyanaraman, R., Sureshkumar, R.: ‘Self-organized metal nanostructures through laser-interference driven thermocapillary convection’, Appl. Phys. Lett., 2007, 91, p. 043105 (doi: 10.1063/1.2762294).
    16. 16)
      • 16. Favazza, C., Kalayanaraman, R., Sureshkumar, R.: ‘Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing’, J. Appl. Phys., 2007, 102, p. 104308 (doi: 10.1063/1.2812560).
    17. 17)
      • 17. Rack, P.D., Guan, Y., Fowlkes, J.D., Melechko, A.V., Simpson, M.L.: ‘Pulsed laser dewetting of patterned thin metal films: a means of directed assembly’, Appl. Phys. Lett., 2008, 92, p. 223108 (doi: 10.1063/1.2939436).
    18. 18)
      • 18. Kondic, L., Diez, J.A., Rack, P.D., Guan, Y., Fowlkes, J.D.: ‘Nanoparticle assembly via the dewetting of patterned thin metal lines: understanding the instability mechanisms’, Phys. Rev. E, 2009, 79, p. 026302 (doi: 10.1103/PhysRevE.79.026302).
    19. 19)
      • 19. Krishna, H., Sachan, R., Strader, J., Favazza, C., Khenner, M., Kalyanaraman, R.: ‘Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films’, Nanotechnology, 2010, 21, p. 155601 (doi: 10.1088/0957-4484/21/15/155601).
    20. 20)
      • 20. Fowlkes, J.D., Kondic, L., Diez, J., Wu, Y., Rack, P.D.: ‘Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films’, Nano Lett., 2011, 11, p. 24782485 (doi: 10.1021/nl200921c).
    21. 21)
      • 21. Sharma, A., Reiter, G.: ‘Instability of thin polymer films on coated substrates: rupture, dewetting, and drop formation’, J. Colloid Interface Sci., 1996, 178, pp. 383399 (doi: 10.1006/jcis.1996.0133).
    22. 22)
      • 22. Buschbaum, P.M., Vanhoorne, P., Scheumann, V., Stamm, M.: ‘Observation of nano-dewetting structures’, Europhys. Lett., 1997, 40, p. 655 (doi: 10.1209/epl/i1997-00519-4).
    23. 23)
      • 23. Geoghegan, M., Krausch, G.: ‘Wetting at polymer surfaces and interfaces’, Prog. Polym. Sci., 2003, 28, pp. 261302 (doi: 10.1016/S0079-6700(02)00080-1).
    24. 24)
      • 24. Sharma, A., Verma, R.: ‘Pattern formation and dewetting in thin films of liquids showing complete macroscale wetting: from “Pancakes” to “swiss cheese”’, Langmuir, 2004, 20, pp. 1033710345 (doi: 10.1021/la048669x).
    25. 25)
      • 25. Ginley, D.S.: ‘Handbook of transparent conductors’ (Springer, 2010).
    26. 26)
      • 26. Frantzeskakis, E.: ‘Analysis of the potential applications for the template dewetting of metal thin films’, Dipl. Eng. Mining Engineering and Metallurgy, National Technical University of Athens (2003). Available at
    27. 27)
      • 27. Wu, Y.: ‘Nanoscale metal thin film dewetting via nanosecond laser melting: understanding instabilities and materials transport in patterned thin films’. PhD Dissertation, University of Tennessee, 2011. Available at
    28. 28)
      • 28. Lian, J., Wang, L., Sun, X., Yu, Q., Ewing, R.C.: ‘Patterning metallic nanostructures by ion-beam-induced dewetting and Rayleigh instability’, Nano Lett., 2006, 6, pp. 10471052 (doi: 10.1021/nl060492z).
    29. 29)
      • 29. Rayleigh, L.: ‘On the instability of jets’, Proc. London Math. Soc., 1879, 10, pp. 413 (doi: 10.1112/plms/s1-10.1.4).
    30. 30)
      • 30. Nichols, F.A., Mullins, W.W.: ‘Surface (Interface) and volume diffusion contributions to morphological changes driven by capillarity’, Trans. Metall. Soc. AIME, 1965, 233, p. 1840.

Related content

This is a required field
Please enter a valid email address