access icon free Large-scale synthesis and characterisation of Ag/Bi2Te3 superlattice nanowires via pulse electrodeposition

Ag/Bi2Te3 superlattice nanowire arrays have been fabricated by pulse electrodeposition using porous anodic aluminium oxide as the template at large-scale quantity. The nanowire arrays were characterised by X-ray diffraction, a scanning electron microscope, a transmission electron microscope and high-resolution transmission electron microscopy (HRTEM). The results indicate that the nanowires are composed of the Bi2Te3 rhombohedral lattice phase and the Ag cubic lattice phase with alternately ordered multi-segment characters. The feature of dark segments alternated with bright segments can be easily distinguished because of the obvious heterogeneous contrast. The length of each segment varies from 25 to 45 nm. The HRTEM result shows that the composition of one segment is Ag and the neighbouring segment is Bi2Te3.

Inspec keywords: transmission electron microscopy; electrodeposition; bismuth compounds; X-ray diffraction; scanning electron microscopy; silver; superlattices; nanowires

Other keywords: size 25 nm to 45 nm; porous anodic aluminium oxide; rhombohedral lattice phase; Ag-Bi2Te3; cubic lattice phase; scanning electron microscopy; large scale synthesis; superlattice nanowire; X-ray diffraction; high resolution transmission electron microscopy; pulse electrodeposition

Subjects: Methods of nanofabrication and processing; Deposition from liquid phases (melts and solutions); Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Crystal structure of specific inorganic compounds

References

    1. 1)
      • 13. Choi, J.R., Oh, S.J., Ju, H., , et al: ‘Massive fabrication of free-standing one-dimensional Co/Pt nanostructures and modulation of ferromagnetism via a programmable barcode layer effect’, Nano Lett., 2005, 5, pp. 21792183 (doi: 10.1021/nl051190k).
    2. 2)
      • 11. Wu, Y.Y., Fan, R., Yang, P.D.: ‘Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires’, Nano Lett., 2002, 2, pp. 8386 (doi: 10.1021/nl0156888).
    3. 3)
      • 16. Wang, W., Zhang, G.Q., Li, X.G.: ‘Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires’, Nano Lett., 2008, 8, pp. 12861290 (doi: 10.1021/nl073039b).
    4. 4)
      • 3. Hochbaum, A.I., Chen, R.K., Delgado, R.D., , et al: ‘Enhanced thermoelectric performance of rough silicon nanowires’, Nature, 2008, 451, pp. 163167 (doi: 10.1038/nature06381).
    5. 5)
      • 1. Snyder, G.J., Toberer, E.S.: ‘Complex thermoelectric materials’, Nat. Mater., 2008, 7, pp. 105114 (doi: 10.1038/nmat2090).
    6. 6)
      • 10. Li, D.P., Wang, G.Z., Yang, Q.H.: ‘Synthesis and photoluminescence of InGaO3(ZnO)m nanowires with perfect superlattice structure’, J. Phys. Chem. C, 2009, 113, pp. 2151221525 (doi: 10.1021/jp906381h).
    7. 7)
      • 8. Cui, J.L., Xiu, W.J., Mao, L.D., , et al: ‘Thermoelectric properties of Ag-doped n-type (Bi2Te3)0.9–(Bi2-xAgxSe3)0.1 (x = 0–0.4) alloys prepared by spark’, J. Solid State Chem., 2007, 180, pp. 11581162 (doi: 10.1016/j.jssc.2006.12.010).
    8. 8)
      • 2. Sales, B.C.: ‘Smaller is cooler’, Science, 2002, 295, pp. 12481249 (doi: 10.1126/science.1069895).
    9. 9)
      • 14. Xue, F.H., Fei, G.T., Wu, B., , et al: ‘Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays’, J. Am. Chem. Soc., 2005, 127, pp. 1534815349 (doi: 10.1021/ja0547073).
    10. 10)
      • 12. Wang, W., Lu, X.L., Zhang, T., , et al: ‘Bi2Te3/Te multiple heterostructure nanowire arrays formed by confined precipitation’, J. Am. Chem. Soc., 2007, 129, pp. 67026703 (doi: 10.1021/ja070976c).
    11. 11)
      • 6. Xiao, F., Yoo, B.Y., Lee, K.H., , et al: ‘Synthesis of Bi2Te3 nanotubes by galvanic displacement’, J. Am. Chem. Soc., 2007, 129, pp. 1006810069 (doi: 10.1021/ja073032w).
    12. 12)
      • 5. Deng, Y., Xiang, Y., Song, Y.Z.: ‘Template-free synthesis and transport properties of Bi2Te3 ordered nanowire arrays via a physical vapor process’, Cryst. Growth. Des., 2009, 9, pp. 30793082 (doi: 10.1021/cg800808u).
    13. 13)
      • 7. Venkatasubramanian, R., Siivola, E., Colpitts, T.: ‘Thin-film thermoelectric devices with high room-temperature figures of merit’, Nature, 2001, 413, pp. 597602 (doi: 10.1038/35098012).
    14. 14)
      • 4. Li, X.H., Zhou, B., Pu, L., , et al: ‘Electrodeposition of Bi2Te3 and Bi2Te3 derived alloy nanotube arrays’, Cryst. Growth Des., 2008, 8, pp. 771775 (doi: 10.1021/cg7006759).
    15. 15)
      • 15. Wang, W., Zhang, G.Q., Li, X.G.: ‘Manipulating growth of thermoelectric Bi2Te3/Sb multilayered nanowire arrays’, J. Phys. Chem. C, 2008, 112, pp. 1519015194 (doi: 10.1021/jp803207r).
    16. 16)
      • 17. Yoo, B.Y., Xiao, F., Bozhilov, K.N., , et al: ‘Electrodeposition of thermoelectric superlattice nanowires’, Adv. Mater., 2007, 19, pp. 296299 (doi: 10.1002/adma.200600606).
    17. 17)
      • 9. Yang, J.Y., Chen, R.G., Fan, X.A., , et al: ‘Thermoelectric properties of silver-doped n-type Bi2Te3-based material prepared by mechanical alloying and subsequent hot pressing’, J. Alloys Compd., 2006, 407, pp. 330333 (doi: 10.1016/j.jallcom.2005.06.041).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2012.0850
Loading

Related content

content/journals/10.1049/mnl.2012.0850
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading