access icon free Evolutionary algorithm and parameters extraction for dye-sensitised solar cells one-diode equivalent circuit model

With the aim of improving energy conversion efficiency of dye-sensitised solar cells (DSCs), three evolutionary algorithms (EAs), namely genetic algorithm, particle swarm optimisation (PSO) and differential evolution, are investigated the first time to extract the DSCs parameters based on the single-diode photovoltaic (PV) equivalent circuit model. By comparing the accuracy, calculation speed and anti-noise ability of the three EA techniques, PSO shows the highest accuracy and the best anti-noise property. To evaluate the parameters, especially the series-internal resistance (R s) that is important for DSCs energy conversion efficiency, a batch of DSCs devices were made and the R s obtained by changing the series resistance value connected with the DSCs. The two methods give the R s approximately equal value, and almost same current–voltage figures based on PSO simulation with measured characteristics, which prove PSO is an efficient computational method and can be used to extract the parameters for the DSCs PV model.

Inspec keywords: genetic algorithms; particle swarm optimisation; solar cells; parameter estimation

Other keywords: dye sensitised solar cells; genetic algorithm; current–voltage figure; energy conversion efficiency; antinoise ability; series internal resistance; parameters extraction; differential evolution; accuracy; one diode equivalent circuit model; particle swarm optimisation; evolutionary algorithm; calculation speed

Subjects: Solar cells and arrays; Optimisation techniques; Photoelectric conversion; solar cells and arrays

References

    1. 1)
      • 10. AlHajri, M.F., El-Naggar, K.M., AlRashidi, M.R., Al-Othman, A.K.: ‘Optimal extraction of solar cell parameters using pattern search’, Renew. Energy, 2012, 44, pp. 238245.
    2. 2)
      • 1. Yella, A., Lee, H.W., Tsao, H.N.: ‘Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency’, Science, 2011, 334, pp. 629634.
    3. 3)
      • 5. Yong, V., Ho, S.T.: ‘Modeling and simulation for dye-sensitized solar cells’, Appl. Phys. Lett., 2008, 92, pp. 143506143508.
    4. 4)
      • 8. Zagrouba, M., Sellami, A.: ‘Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction’, Sol. Energy, 2010, 84, pp. 860866.
    5. 5)
      • 12. Ishaque, K., Salam, Z., Taheri, H., Shamsudin, A.: ‘A critical evaluation of EA computational methods for photovoltaic cell parameter extraction based on two diode model’, Sol. Energy, 2011, 85, pp. 17681779.
    6. 6)
      • 15. Liu, N., Lee, K.Y., Schmuki, P.: ‘Small diameter TiO nanotubes vs. nanopores in dye sensitized solar cells’, Electrochem. Commun., 2012, 15, pp. 14.
    7. 7)
      • 7. Wang, Q., Moser, J.E., Grätzel, M.: ‘Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells’, J. Phys. Chem. B, 2005, 109, pp. 1494514953.
    8. 8)
      • 13. Zhang, C., Zhang, J.C., Hao, Y., Lin, Z.H., Zhu, C.X.: ‘A simple and efficient solar cell parameter extraction method from a single current-voltage curve’, J. Appl. Phys., 2011, 110, pp. 064504064506.
    9. 9)
      • 11. Macabebe, E.Q.B., Sheppard, C.J., Dyk, E.E.V.: ‘Parameter extraction from IV characteristics of PV devices’, Sol. Energy, 2011, 85, pp. 1218.
    10. 10)
      • 3. O'Regan, B., Grätzel, M.: ‘A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films’, Nature, 1991, 353, pp. 73774.
    11. 11)
      • 2. Han, L.Y., Islam, A., Chen, H.: ‘High-efficiency dye-sensitized solar cell with a novel co-adsorbent’, Energy Environ. Sci., 2012, 5, pp. 60576060.
    12. 12)
      • 17. Han, L.Y., Koide, N., Chiba, Y., Islam, A.: ‘Improvement of the efficiency of dye-sensitized solar cells by reduction of internal resistance’, Appl. Phys. Lett., 2005, 86, pp. 213501213503.
    13. 13)
      • 6. Koide, N., Islam, A., Chiba, Y., Han, L.Y.: ‘Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit’, J. Photochem. Photobiol. A, 2006, 182, pp. 296305.
    14. 14)
      • 4. Murayama, M., Mori, T.: ‘Evaluation of treatment effects for high-performance dye-sensitized solar cells using equivalent circuit analysis’, Thin Solid Films, 2006, 509, pp. 123126.
    15. 15)
      • 16. Yang, C.C., Zheng, Y.R.: ‘Improved the performance of dye-sensitized solar cells by incorporating mesoporous silica (SBA-15) materials in scattering layer’, J. Power Sources, 2012, 201, pp. 387394.
    16. 16)
      • 14. Kim, A.Y., Kang, M.: ‘High efficiency dye-sensitized solar cells based on multilayer stacked TiO2 nanoparticle/nanotube photoelectrodes’, J. Photochem. Photobiol. A, 2012, 133, pp. 2023.
    17. 17)
      • 9. Jervase, J.A., Bourdoucen, H., Ali, A.L.: ‘Solar cell parameter extraction using genetic algorithms’, Meas. Sci. Technol., 2001, 12, pp. 19221925.
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2012.0806
Loading

Related content

content/journals/10.1049/mnl.2012.0806
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading