access icon free Investigation of multiwall carbon nanotube-based nanofluid advantages in microchannel heat sinks

In this Letter, the cooling performance of microchannel heat sinks, as well as a comparison of the heat the transfer efficiency of two nanofluids: Al2O3–water and multiwall carbon nanotube (MWCNT)–water and pure water, is investigated. At first, the same pumping power inlet boundary condition, which is a standard comparison of the performance of different fluids, is applied for a single rectangular duct, and the results are stored for the modelling of the heat sink. Following this stage, a heat sink made up of aluminium with water as working fluid is modelled. After validation of the results and optimisation of the grid, the efficiency of the three fluids is compared. It is seen that by using MWCNT–water nanofluid instead of water in a typical heat sink, the mean reduction in thermal resistance for MWCNT–water and Al2O3–water, in comparison with using water, respectively, are 18 and 1%. This shows the great advantages of using MWCNTs in heat sinks in comparison with Al2O3.

Inspec keywords: nanofluidics; carbon nanotubes; ducts; thermal resistance; heat sinks; cooling; microchannel flow

Other keywords: microchannel heat sinks; heat transfer efficiency; grid optimisation; cooling performance; thermal resistance; MWCNT-water nanofluid; heat sink modelling; pumping power inlet boundary condition; multiwall carbon nanotube-based nanofluid advantages; single-rectangular duct; aluminium oxide-water

Subjects: Applied fluid mechanics; Fullerene, nanotube and related devices; MEMS and NEMS device technology; Heat and thermodynamic processes (mechanical engineering); Flows in ducts, channels, and conduits; Micromechanics (mechanical engineering); Fluid mechanics and aerodynamics (mechanical engineering)

References

    1. 1)
      • 8. Toh, K.C., Chen, X.Y., Chai, J.C.: ‘Numerical computation of fluid flow and heat transfer in microchannels’, Int. J. Heat Mass Transf., 2002, 45, pp. 51335141 (doi: 10.1016/S0017-9310(02)00223-5).
    2. 2)
      • 12. Kamali, R., Binesh, A.R.: ‘Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids’, Int. Commun. Heat Mass Transf., 2010, 37, pp. 11531157. (doi: 10.1016/j.icheatmasstransfer.2010.06.001).
    3. 3)
      • 9. Tiselj, I., Hetsroni, G., Mavko, B., et al: ‘Effect of axial conduction on the heat transfer in microchannels’, Int. J. Heat Mass Transf., 2004, 47, pp. 25512565 (doi: 10.1016/j.ijheatmasstransfer.2004.01.008).
    4. 4)
      • 10. Jang, S.P., Choi, S.U.S.: ‘Cooling performance of a microchannel heat sink with nanofluids’, Appl. Therm. Eng., 2006, 26, pp. 24572463 (doi: 10.1016/j.applthermaleng.2006.02.036).
    5. 5)
      • 11. Mohammed, H.A., Gunnasegaran, P., Shuaib, N.H.: ‘Heat transfer in rectangular microchannels heat sink using nanofluids’, Int. Commun. Heat Mass Transf., 2010, 37, (10), pp. 14961503 (doi: 10.1016/j.icheatmasstransfer.2010.08.020).
    6. 6)
      • 5. Chen, C.-H.: ‘Analysis on non-Darcy mixed convection from impermeable horizontal surfaces in porous media-the entire regime’, Int. J. Heat Mass Transf., 1997, 40, pp. 29932997 (doi: 10.1016/S0017-9310(96)00324-9).
    7. 7)
      • 13. Garg, P., Alvarado, J.L., Marsh, C.H., et al: ‘An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids’, Int. J. Heat Mass Transf., 2009, 52, pp. 50905101 (doi: 10.1016/j.ijheatmasstransfer.2009.04.029).
    8. 8)
      • 7. Chen, C.-H., Ding, C.-Y.: ‘Study on the thermal behavior and cooling performance of a nanofluid-cooled microchannel heat sink’, Int. J. Thermal Sci., 2011, 50, (3), pp. 378384 (doi: 10.1016/j.ijthermalsci.2010.04.020).
    9. 9)
      • 6. Chen, C.-H.: ‘Forced convection heat transfer in microchannel heat sinks’, Int. J. Heat Mass Transf., 2007, 50, pp. 21822189 (doi: 10.1016/j.ijheatmasstransfer.2006.11.001).
    10. 10)
      • 2. Phillips, R.J.: ‘Microchannel heat sinks’, in Bar-Cohen, A. (Ed.): ‘Advances in thermal modeling of electronic components and systems’ (ASME Press, New York, 1990), Chap. 3, pp. 109122.
    11. 11)
      • 4. Poulikakos, P., Renken, K.: ‘Forced convection in a channel filled with porous medium, including the effects of flow inertia, variable porosity, and Brinkman friction’, ASME J. Heat Transf., 1987, 109, pp. 880888 (doi: 10.1115/1.3248198).
    12. 12)
      • 3. Vafaei, K., Tien, C.L.: ‘Boundary and inertia effects on flow and heat transfer in porous media’, Int. J. Heat Mass Transf., 1981, 24, pp. 195203 (doi: 10.1016/0017-9310(81)90027-2).
    13. 13)
      • 1. Tuckerman, D.B., Pease, R.F.: ‘High performance heat sinking for VLSI’, IEEE Electron Device Lett., 1981, 2, (5), pp. 126129 (doi: 10.1109/EDL.1981.25367).
    14. 14)
      • 14. Moody, L.F.: ‘Friction factors for pipe flow’, J. Heat Transf., 1944, 66, pp. 671684.
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2012.0803
Loading

Related content

content/journals/10.1049/mnl.2012.0803
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading