access icon free Realisation of semiconductor ternary quantum dot cellular automata

Quantum dot cellular automata (QCA) have become a strong alternative for nanoscale computing. After a decade of exhaustive research on binary QCA, the newly introduced ternary QCA (tQCA) for implementing ternary logic needs further research to actually fabricate the tQCA cell. In this Letter, a quantum mechanical approach is presented for calculating the diverse parameters required for the fabrication of the tQCA. The effect of quantum dot size, the size of tQCA cell as well as the effect of temperature on polarisation for the tQCA cell are examined. The significant result for fabrication of the tQCA cell is tunnelling resistance, which must be greater than the quantum Hall resistance, that is, Rt ≫ 25.813 kΩ. The tQCA needs a quantum dot size which is < 6.36 nm to operate at room temperature and the distance of separation between two dots must be 5 nm. The steady-state behaviour of the tQCA cell using the Hubbard model and the Schrödinger time-independent equation is also explored.

Inspec keywords: quantum dots; ternary semiconductors; cellular automata; ternary logic

Other keywords: quantum hall resistance; tQCA cell; Schrödinger time-independent equation; Hubbard model; ternary logic; tunnelling resistance; quantum mechanical model; semiconductor ternary quantum dot cellular automata; nanoscale computing

Subjects: Other semiconductor materials; Formal logic; Automata theory; Logic circuits

References

    1. 1)
      • 18. Bennett, C.H.: ‘Logical reversibility of computation’, IBM J. Res. Dev., 1973, 17, pp. 525532 (doi: 10.1147/rd.176.0525).
    2. 2)
      • 27. Gupta, P., Agarwal, A., Jha, N.K.: ‘An algorithm for synthesis of reversible logic circuits’, IEEE Trans. Comput.-Aided Des. Integr. Syst., 2006, 25, (11), pp. 23172330 (doi: 10.1109/TCAD.2006.871622).
    3. 3)
      • 16. Huang, J., Momenzadeh, M., Schiano, L., Lombardi, F.: ‘Simulation-based design of modular QCA circuits’. Proc. IEEE Conf. on Nanotechnology, Nagoya, Japan, 2005, pp. 533536.
    4. 4)
      • 40. Michael, G.: ‘Quantum-dot cellular automata serial decimal adder’, IEEE Trans. Nanotechnol., 2011, 10, (6), pp. 13771382 (doi: 10.1109/TNANO.2011.2138714).
    5. 5)
      • 32. Das, K., De, D.: ‘Characterization, test and logic synthesis of novel conservative & reversible logic gates for QCA’, Int. J. Nanosci., 2010, 9, (2), pp. 201214 (doi: 10.1142/S0219581X10006594).
    6. 6)
      • 33. Das, K., De, D.: ‘Novel approach to design a testable conservative logic gate for QCA implementation’. Proc. IEEE Int. Conf. IACC'2010, 19–20 February 2010, pp. 8287.
    7. 7)
      • 31. Thapliyal, H., Ranganathan, N.: ‘Testable reversible latches for molecular QCA’. Proc. IEEE Conf. NANO ’08, 2008, pp. 699702.
    8. 8)
      • 34. Das, K., De, D.: ‘QCA defect and fault analysis of diverse nanostructure for implementing logic gate’, Int. J. Recent Trends Eng. , 2010, 3, (1), pp. 15.
    9. 9)
      • 30. International technology roadmap for semiconductors (Semiconductor Industries Association, San Jose, CA, USA, 2001), http://public.itrs.net.
    10. 10)
      • 15. Wang, W., Zhang, R., Walus, K., Jullien, G.A.: ‘A method of majority logic reduction for quantum cellular automata’, IEEE Trans. Nanotechnol., 2004, 3, (4), pp. 443450 (doi: 10.1109/TNANO.2004.834177).
    11. 11)
      • 24. Patel, K., Markov, I., Hayes, J.: ‘Optimal synthesis of linear reversible circuits’, Quantum Inf. Comput., 2008, 8, (3–4), pp. 282294.
    12. 12)
      • 19. Perkowski, M., Al-Rabadi, A., Kerntopf, P., et al: ‘A general decomposition for reversible logic’. Proc. RM 2001, Starkville, MS, USA, 2001, pp. 119138.
    13. 13)
      • 3. Pecar, P., Ramsak, A., Zimic, N., Mraz, M., Lebar Bajec, I.: ‘Adiabatic pipelining: a key to ternary computing with quantum dots’, IOP Nanotechnol., 2008, 19, (49), pp. 495401 (doi: 10.1088/0957-4484/19/49/495401).
    14. 14)
      • 10. Das, K., De, D.: ‘A novel approach of And-Or-Inverter (AOI) gate design for QCA’. Proc. IEEE Conf. on CODEC-09, December 2009, pp. 14.
    15. 15)
      • 5. Pecar, P., Lebar Bajec, I.: ‘The key elements of logic design in ternary quantum-dot cellular automata’, Unconventional computation, Lect. Notes Comput. Sci., 6714, 2011, pp. 177188, doi:10.1007/978-3-642-21341-0_21.
    16. 16)
      • 14. Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: ‘Defects and faults in quantum cellular automata at nano scale’. Proc. VLSI Test Symp., Napa Valley, CA, USA, 2004, pp. 291296.
    17. 17)
      • 29. Wang, W., Zhang, R., Walus, K., Jullien, G.A.: ‘A method of majority logic reduction for quantum cellular automata’, IEEE Trans. Nanotechnol., 2004, 3, (4), pp. 443450 (doi: 10.1109/TNANO.2004.834177).
    18. 18)
      • 8. Amlani, I., Orlov, A., Snider, G., Lent, C., Porod, W., Bernstein, G.: ‘Experimental demonstration of electron switching in a quantum-dot cellular automata (QCA) cell’, Superlattices Microstruct., 1999, 25, (1–2), pp. 273278 (doi: 10.1006/spmi.1998.0647).
    19. 19)
      • 9. Tougaw, P.D., Lent, C.S.: ‘Dynamic behavior of quantum cellular automata’, J. Appl. Phys., 1996, 80, pp. 47224736 (doi: 10.1063/1.363455).
    20. 20)
      • 7. Lent, C.S., Taugaw, P.D., Porod, W., Bernstein, G.H.: ‘Quantum cellular automata’, Nanotechnology, 1993, 4, pp. 4957 (doi: 10.1088/0957-4484/4/1/004).
    21. 21)
      • 4. Lebar Bajec, I., Pecar, P.: ‘Two-layer synchronized ternary quantum-dot cellular automata wire crossings’, Nanoscale Res. Lett., 2012, 7, p. 221 (doi: 10.1186/1556-276X-7-221).
    22. 22)
      • 1. Lebar Bajec, I., Zimic, N., Mraz, M.: ‘The ternary quantum-dot cell and ternary logic’, IOP Nanotechnol., 2006, 17, (8), pp. 19371942 (doi: 10.1088/0957-4484/17/8/023).
    23. 23)
      • 20. Feynman, R.: ‘Quantum mechanical computers’, Opt. News, 1985, 11, pp. 1120 (doi: 10.1364/ON.11.2.000011).
    24. 24)
      • 17. Landauer, R.: ‘Irreversibility and heat generation in the computing process’, IBM J. Res. Dev., 1961, 5, (3), pp. 183191 (doi: 10.1147/rd.53.0183).
    25. 25)
      • 23. Thapliyal, H., Ranganathan, N.: ‘Design of efficient reversible binary subtractors based on a new reversible gate’. IEEE Computer Society Annual Symp. VLSI, 2009 (ISVLSI’09)May 2009, pp. 229234.
    26. 26)
      • 26. Hung, W.N.N., Song, X., Yang, G., Yang, J., Perkowski, M.: ‘Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis’, IEEE Trans. Comput.-Aided Des. Integr. Syst., 2006, 25, (9), pp. 16521663 (doi: 10.1109/TCAD.2005.858352).
    27. 27)
      • 11. Das, K., De, D.: ‘A study on diverse nanostructure for implementing logic gate design for QCA’, Int. J. Nanosci., 2011, 10, (1–2), (February & April 2011), pp. 263269 (doi: 10.1142/S0219581X11007892).
    28. 28)
      • 25. Maslov, D., Dueck, G.W.: ‘Reversible cascades with minimal garbage’, IEEE Trans. Comput.-Aided Des. Integr. Syst., 2004, 23, (11), pp. 14971509 (doi: 10.1109/TCAD.2004.836735).
    29. 29)
      • 6. Shi-Yan, Y., Tai-Yi, P., Lin-Rong, X.: ‘A simulation of basic logic circuit based on ternary quantum-dot cellular automata’. IEEE Proc. 30th IEEE Chinese Conf. on Control Conference, 2011, pp. 53245327.
    30. 30)
      • 38. Cho, H., Swartzlander, E.E.: ‘Adder designs and analyses for quantum-dot cellular automata’, IEEE Trans. Nanotechnol., 2007, 6, (3), pp. 37438 (doi: 10.1109/TNANO.2007.894839).
    31. 31)
      • 22. Fredkin, E., Toffoli, T.: ‘Conservative logic’, Int. J. Theor. Phys., 1982, 21, pp. 219253 (doi: 10.1007/BF01857727).
    32. 32)
      • 13. Momenzadeh, M., Huang, J., Tahoori, M.B., Lombard, : ‘Characterization, test, and logic synthesis of And-Or-Inverter (AOI) gate design for QCA implementation’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2005, 24, pp. 18811893 (doi: 10.1109/TCAD.2005.852667).
    33. 33)
      • 41. Lu, L., Liu, W., O'Neill, M., Swartzlander, E.E.: ‘QCA systolic array design’, IEEE Trans. Comput., 2012, 11, pp. 105119doi: 10.1109/TC.2011.234.
    34. 34)
      • 12. Thoori, M.B., Huang, J., Momenzadeh, M., Lombardi, F.: ‘Testing of quantum cell automata’, IEEE Trans. Nanotechnol., 2004, 3, (4), pp. 432442 (doi: 10.1109/TNANO.2004.834169).
    35. 35)
      • 37. Pradhan, N., Das, K., De, D.: ‘Diverse clocking strategy in MQCA’. Proc. IEEE Conf. on Recent Advances in Information Technology (RAIT), 15–17 March 2012, pp. 771775..
    36. 36)
      • 39. Pudi, V., Sridharan, K.: ‘Low complexity design of ripple carry and Brent–Kung adders in QCA’, IEEE Trans. Nanotechnol., 2012, 11, (1), pp. 105119 (doi: 10.1109/TNANO.2011.2158006).
    37. 37)
      • 21. Toffoli, T.: ‘Reversible computing’. Tech Memo MIT/LCS/TM-151, MIT Lab for Computer Science, 1980.
    38. 38)
      • 28. Tougaw, P.D., Lent, C.S.: ‘Logical devices implemented using quantum cellular automata’, J. Appl. Phys., 1994, 75, (3), pp. 18181825 (doi: 10.1063/1.356375).
    39. 39)
      • 36. De, D., Bhattacharaya, S., Ghatak, K.P.: ‘Tile based approach to design logic circuit and it's defects analysis for quantum dot cellular automata’. In: ‘Quantum dots and quantum cellular automata: recent trends and applications’ (Nova Science Publishers, Inc., USA). [2013].
    40. 40)
      • 2. Pecar, P., Mraz, M., Zimic, N., Janez, M., Bajec, I.L.: ‘Solving the ternary QCA logic gate problem by means of adiabatic switching’, Jpn. J. Appl. Phys., 2008, 47, (6), pp. 50005006 (doi: 10.1143/JJAP.47.5000).
    41. 41)
      • 35. Das, K., De, D.: ‘Characterization, applicability and defect analysis for tiles nanostructure of quantum dot cellular automata’, J. Mol. Simul., 2011, 37, (3), pp. 210225 (doi: 10.1080/08927022.2010.536543).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2012.0618
Loading

Related content

content/journals/10.1049/mnl.2012.0618
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading