Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Microelectrode sensor utilising nitro-sensitive polymers for application in explosives detection

Microelectrode sensor utilising nitro-sensitive polymers for application in explosives detection

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This Letter describes a fabrication of a microsensor incorporating a novel customised nitro-sensitive polymer derived from the propylenedioxythiophene family. Electrochemical polymerisation was used to selectively grow different types of localised polymer films on interdigitated electrode arrays, thereby fabricating miniature sensors that exhibited a highly selective and reversible response to chemical vapours containing ‘nitro’ (NO2) groups. Such nitro-bearing vapours are also present in trace quantities in the atmosphere in the presence of explosives. Vapours of nitropropane and nitrobenzene, serving as model analytes for explosives, were used for sensor testing. The sensors were demonstrated to have up to three orders of magnitude higher signal response to vapours from nitro compounds compared to other vapours commonly found in the atmosphere. The authors believe this is the highest selectivity to nitro compounds reported from a polymer-based chemicapacitor sensor.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • S. Cosnier , A. Karyakin . (2010) Electropolymerization: concepts, materials and applications.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2012.0459
Loading

Related content

content/journals/10.1049/mnl.2012.0459
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address