Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Compact nanostructure integrated pool boiler for microscale cooling applications

Compact nanostructure integrated pool boiler for microscale cooling applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An efficient cooling system without any external energy consumption that consists of a plate, on which an array of copper nanorods with an average diameter ∼100 nm and length ∼500 nm is integrated to a planar copper thin film coated silicon wafer surface, a heater, an aluminium base and a pool was developed. Heat is efficiently transferred from the nanostructure coated base plate to the liquid in the pool through boiling heat transfer mechanism. Phase change took place near the nanostructured plate, where the bubbles started to emerge because of the existing wall superheat. Bubble formation and bubble motion inside the pool resulted in effective heat transfer from the plate surface to the pool. Surface temperatures were measured and heat transfer coefficients were calculated for two working fluids; namely, water and ethanol. In this study, it was shown that using nanostructured surfaces can have the potential to be an effective method of device cooling for small and excessive heat generating microsystem applications, such as microelectromechanical systems, or microprocessors.

References

    1. 1)
      • D. Milanova , R. Kumar . Role of ions in pool boiling heat transfer of pure and silica nanofluids. Appl. Phys. Lett. , 23
    2. 2)
      • W.J. Khudhayer , R. Sharma , T. Karabacak . Hydrophobic metallic nanorods with teflon nanopatches. Nanotechnology , 27
    3. 3)
      • H. Kim , J. Kim , M. Kim . Experimental study on CHF characteristics of water TiO2 nano-fluids. Nucl. Eng. Technol. , 1 , 61 - 68
    4. 4)
      • P. Vassallo , R. Kumar , S. D'Amico . Pool boiling heat transfer experiments in silica–water nano-fluids. Int. J. Heat Mass Transf. , 2 , 407 - 411
    5. 5)
      • I.C. Bang , S.H. Chang . Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Transf. , 12 , 2407 - 2419
    6. 6)
      • P. Keblinski , J.A. Eastman , D.G. Cahill . Nanofluids for thermal transport. Mater. Today , 6 , 36 - 44
    7. 7)
      • Ujereh, S., Fisher, T.S., Mudawar, I., Amama, P.B., Qu, W.: `Enhanced pool boiling using carbon nanotube arrays on a silicon surface', ASME Int. Mechanical Engineering Congress & Exposition, 2005.
    8. 8)
      • Sesen, M., Khudhayer, W.J., Karabacak, T., Kosar, A.: `A compact nanostructure integrated pool boiler for microscale cooling applications', ASME Int. Mechanical Engineering Congress & Exposition, 2009, IMECE2009–11008.
    9. 9)
      • T. Karabacak , T.-M. Lu , M. Rieth , W. Schommers . (2005) Shadowing growth and physical self-assembly.
    10. 10)
      • C. Li , Z. Wang , P.-I. Wang , Y. Peles , N. Koratkar , G.P. Peterson . Nanostructured copper interfaces for enhanced boiling. Small , 8 , 1084 - 1088
    11. 11)
      • D.-X. Ye , T.-M. Lu , T. Karabacak . Influence of nanotips on the hydrophilicity of metallic nanorod surfaces. Phys. Rev. Lett. , 25
    12. 12)
      • T. Karabacak , G.C. Wang , T.-M. Lu . Physical self-assembly and the nucleation of 3D nanostructures by oblique angle deposition. J. Vac. Sci. Technol. A , 4 , 1778 - 1784
    13. 13)
      • T. Karabacak , J.S. DeLuca , D. Ye , P.-I. Wang , G.-C. Wang , T.-M. Lu . Low temperature melting of copper nanorod arrays. J. Appl. Phys. , 6
    14. 14)
      • S. Vemuri , K.J. Kim . Pool boiling of saturated FC-72 on nano-porous surface. Int. Commun. Heat Mass Transf. , 27 - 31
    15. 15)
      • T. Karabacak , P.-I. Wang , G.-C. Wang , T.-M. Lu . Growth of single crystal tungsten nanorods by oblique angle sputter deposition. Mater. Res. Soc. Symp. Proc.
    16. 16)
      • D.-X. Ye , T. Karabacak , R.C. Picu , G.-C. Wang , T.-M. Lu . Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation. Nanotechnology , 9 , 1717 - 1723
    17. 17)
      • T. Karabacak , P.-I. Wang , G.-C. Wang , T.-M. Lu . Phase transformation of single crystal β-tungsten nanorods at elevated temperatures. Thin Solid Films , 12 , 293 - 296
    18. 18)
      • S.J. Kim , I.C. Bang , J. Buongiorno , L.W. Hu . Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transf. , 4105 - 4116
    19. 19)
      • S.M. You , J.H. Kim , K.H. Kim . Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett. , 16
    20. 20)
      • H. Honda , H. Takamatsu , J.J. Wei . Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness. J. Heat Transf. , 2 , 383 - 390
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2010.0070
Loading

Related content

content/journals/10.1049/mnl.2010.0070
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address