High sensitivity temperature sensor based on a long, suspended single-walled carbon nanotube array

Access Full Text

High sensitivity temperature sensor based on a long, suspended single-walled carbon nanotube array

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Considering the electron–phonon scattering mechanisms as well as the number of conduction channels, the long single-walled carbon nanotube (SWCNT) has larger temperature coefficient of resistivity than that of the short SWCNT or that of the multi-walled carbon nanotube (CNT). A tens of micrometres length, suspended SWCNT array-based temperature sensor was proposed, and its fabrication technique was presented. The theoretical analysis and the experimental results showed that the long SWCNT array device had high sensitivity and low power consumption than ordinary platinum thermal resistor. The long SWCNT array sensor also featured a simple and application-oriented process and was easier to use than a single CNT-based device. Thus, it has the potential to be applied in high sensitivity temperatures or flow measurements in an ultra small scale.

Inspec keywords: electrical resistivity; carbon nanotubes; nanofabrication; sensor arrays; temperature sensors; nanotube devices; electron-phonon interactions; nanosensors

Other keywords: long suspended single-walled carbon nanotube array; SWCNT array sensor; temperature coefficient of resistivity; low power consumption; high sensitivity temperature sensor; electron-phonon scattering; C; conduction channels

Subjects: Sensing and detecting devices; Micromechanical and nanomechanical devices and systems; Fabrication of MEMS and NEMS devices; Fullerene, nanotube and related devices; Thermometry; Microsensors and nanosensors

References

    1. 1)
      • M. Freitag , Y. Martin , J.A. Misewich , R. Martel , P. Avouris . Photoconductivity of single carbon nanotubes. Nano Lett. , 1067 - 1071
    2. 2)
      • M. Benjamin , L. Cosmin , Y. Ronnie , S. Yun . Development of carbon nanotube-based sensors – a review. IEEE Sens. J. , 266 - 284
    3. 3)
      • M. Kenzo , M. Kazuhiko . Label-free electrical detection using carbon nanotube-based biosensors. Sensors , 5368 - 5378
    4. 4)
      • L. Chunyu , C. Tsuwei . Strain and pressure sensing using single-walled carbon nanotubes. Nanotechnology , 1493 - 1496
    5. 5)
      • Z. Yingying , Z. Jin , S. Hyungbin , K. Jing , L. Zhongfan . Substrate-induced Raman frequency variation for single-walled carbon nanotubes. J. Am. Chem. Soc. , 17156 - 17157
    6. 6)
      • K.M.F. Carmen , T.S.W. Victor , H.M.C. Rosa , J.L. Wen . Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors. IEEE Trans. Nanotechnol. , 395 - 403
    7. 7)
      • G. Yihua , B. Yoshio , L. Zongwen , G. Dmitri . Temperature measurement using a gallium-filled carbon nanotube nanothermometer. Appl. Phys. Lett. , 2913 - 2915
    8. 8)
      • P. Mahanandia , L.T. Singh , K.K. Nanda . Possible application of carbon nanotube bundles for low temperature sensing. Rev. Sci. Instrum.
    9. 9)
      • R.A. Shah , R.P. Rishi , B. Yetunde , M. Yufeng , H. Huixin . A nonoxidative electrochemical sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine: a review. Sensors , 8423 - 8452
    10. 10)
      • L. Tingting , Q. Ming , H. Qingan . The design of a novel MEMS temperature sensor. J. Funct. Mater. Dev. , 223 - 226
    11. 11)
      • Fumihito, A., Chinaik, N., Pou, L.: `Ultra-small site temperature sensing by carbon nanotube thermal probes', Fourth IEEE Conf. Nanotechnology, 2004, 2004, p. 146–148.
    12. 12)
      • Z. Xinjian , P. Jiyong , H. Shaoming , L. Jie , L.M. Paul . Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett.
    13. 13)
      • A. Naeemi , J.M. Meindl . Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube interconnects. IEEE Electron Dev. Lett. , 135 - 138
    14. 14)
      • A. Masuhiro , M. Katsuyuki , A. Tatsuaki , M. Kazuhiko . Calibration method for a carbon nanotube field-effect transistor biosensor. Nanotechnology
    15. 15)
      • C. Jien , W. Qian , D. Hongjie . Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys Rev. Lett.
    16. 16)
      • A. Javey , J. Guo , Q. Wang , M. Lundstrom , H.J. Dai . Ballistic carbon nanotube field-effect transistors. Nature , 654 - 657
    17. 17)
      • E.I. Mikhail , B. Ferenc , Y. Aiping , C.H. Robert . Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science , 413 - 416
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2010.0005
Loading

Related content

content/journals/10.1049/mnl.2010.0005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading