http://iet.metastore.ingenta.com
1887

Low-frequency noise and hysteresis in graphene field-effect transistors on oxide

Low-frequency noise and hysteresis in graphene field-effect transistors on oxide

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors report measurements of low-frequency noise and hysteresis in graphene monolayer and bilayer field-effect transistors (FETs) fabricated on 90 and 290 nm oxidised silicon substrates. The authors observe hysteresis induced by stressing the oxide up to fields of 2 MV/cm and have characterised the hysteresis against stress time and sample temperature. Low-frequency current noise with a 1/f2 spectral density arises from the drift of neutrality point voltage, and subsequent drift of graphene FET channel current. A simple model of charge trapping at the graphene–oxide interface and thermally activated ion motion accounts for the temperature dependence of the observed hysteresis.

References

    1. 1)
    2. 2)
      • A.K. Geim , K.S. Novoselov . The rise of graphene. Nat. Mater. , 183 - 191
    3. 3)
      • F. Schedin , A.K. Geim , S.V. Morozov . Detection of individual gas molecules adsorbed on graphene. Nat. Mater. , 652 - 655
    4. 4)
      • Y. Lin , K.A. Jenkins , A. Valdes-Garcia , J.P. Small , D.B. Farmer , P. Avouris . Operation of graphene transistors at gigahertz frequencies. Nano Lett. , 1 , 422 - 426
    5. 5)
      • Meric, I., Baklitskaya, N., Kim, P., Shepard, K.L.: `RF performance of top-gated, zero-bandgap graphene field-effect transistors', IEEE Electron Devices Meeting, 2008, p. 1–4.
    6. 6)
      • T.J. Echtermeyer , M.C. Lemme , M. Baus , B.N. Szafranek , A.K. Geim , A. Kurz . Nonvolatile switching in graphene field-effect devices. IEEE Electron Device Lett. , 8 , 952 - 954
    7. 7)
      • K.I. Bolotin , K.J. Sikes , Z. Jiang . Ultrahigh electron mobility in suspended graphene. Solid State Commun. , 351 - 355
    8. 8)
      • R. Daneau , F. Wu , M.F. Craciun . Shot noise in ballistic graphene. Phys. Rev. Lett.
    9. 9)
      • L. DiCarlo , J.R. Williams , Y. Zhang , D.T. McClure , C.M. Marcus . Shot noise in graphene. Phys. Rev. Lett.
    10. 10)
      • Y. Lin , P. Avouris . Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. , 8 , 2119 - 2125
    11. 11)
      • G. Liu , W. Stillman , S. Rumyantsev , Q. Shao , M. Shur , A.A. Balandin . Low-noise top-gate graphene transistors. Appl. Phys. Lett.
    12. 12)
      • A.N. Pal , A. Ghosh . Resistance noise in electrically biased bilayer graphene. Phys. Rev. Lett.
    13. 13)
      • A.N. Pal , A. Ghosh . Ultralow noise field-effect transistor from multilayer graphene. Appl. Phys. Lett.
    14. 14)
      • Q. Shao , G. Liu , D. Teweldebrhan . Flicker noise in bilayer graphene transistors. IEEE Electron Device Lett. , 3 , 288 - 290
    15. 15)
      • Y. Zheng , G.-X. Ni , C.-T. Toh . Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett.
    16. 16)
      • M. Kuhn , D.J. Silversmith . Ionic contamination and transport of mobile ions in MOS structures. J. Electrochem. Soc.
    17. 17)
    18. 18)
      • P. Blake , E.W. Hill , A.H. Castro . Making graphene visible. Appl. Phys. Lett.
    19. 19)
      • P.E. Gaskell , H.S. Skulason , C. Rodenchuk , T. Szkopek . Counting graphene layers on glass via optical reflection microscopy. Appl. Phys. Lett.
    20. 20)
      • C.M. Aguirre , P.L. Levesque , M. Paillet . The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors. Adv. Mater. , 30 , 3087 - 3091
    21. 21)
      • G. Greeuw , J.F. Verwey . The mobility of Na+, Li+ and K+ ions in thermally grown SiO2 films. J. Appl. Phys. , 2218 - 2284
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2009.0052
Loading

Related content

content/journals/10.1049/mnl.2009.0052
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address