Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Overall computing offloading strategy based on deep reinforcement learning in vehicle fog computing

In order to solve the problem of network congestion caused by a large number of data requests generated by intelligent vehicles in LTE-V network, a brand-new fog server with fog computing function is deployed on both the cellular base stations and vehicles, and an LTE-V-fog network is constructed to deal with delay-sensitive service requests in the Internet of vehicles. The weighted total cost combines delay and energy consumption is taken as the optimisation goal. First a reinforcement learning algorithm Q-learning based on Markov decision process is proposed to solve the problem for minimising weighted total cost. Furthermore, this study specifically explains the setting method of three elements for reinforcement learning-state, action and reward in the fog computing system. Then for reducing the scale of problems and improving efficiency, the authors set up a pre-classification process before reinforcement learning to control the possible values of actions. However, considering that as the number of vehicles in system increases, Q-learning method based on recorded Q values may fall into a dimensional disaster. Therefore, the authors propose a deep reinforcement learning method, deep Q-learning network (DQN), which combines deep learning and Q-learning. Experimental results show that the proposed method has advantages.

References

    1. 1)
    2. 2)
      • 32. Vo, N.-S., Duong, T.Q., Tuan, H.D., et al: ‘Optimal video streaming in dense 5G networks with D2D communications’, IEEE Access, 2018, 6, (99), pp. 209223.
    3. 3)
      • 12. Rafael, M.M., Javier, G.: ‘LTE-V for sidelink 5G V2X vehicular communications’, IEEE Veh. Technol. Mag., 2017, 12, (4), pp. 3039.
    4. 4)
      • 29. El-Sayed, H., Chaqfeh, M.: ‘The deployment of mobile edges in vehicular environments’. 2018 Int. Conf. on Information Networking (ICOIN), Chiang Mai, Thailand, 2018.
    5. 5)
      • 7. Xie, Y., Ho, I.W.-H., Magsino, E.R.: ‘The modeling and cross-layer optimization of 802.11p VANET unicast’, IEEE Access, 2018, 6, (1), pp. 171186.
    6. 6)
      • 18. Zhao, P.T., Tian, H., Qin, C., et al: ‘Energy-saving offload-ing by jointly allocating radio and computational re- sources for mobile edge computing’, IEEE Access, 2017, 5, pp. 1125511268.
    7. 7)
      • 27. Liu, J., Wan, J., Zeng, B., et al: ‘A scalable and quick-response software defined vehicular network assisted by mobile edge computing’, IEEE Commun. Mag., 2017, 55, (7), pp. 94100.
    8. 8)
      • 15. Hou, X., Li, Y., Chen, M.: ‘Vehicular fog computing: A viewpoint of vehicles as the infrastructures’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 38603873.
    9. 9)
      • 21. Ozturk, S., Akdemir, B.: ‘Cell-type based semantic segmentation of histopathological images using deep convolutional neural networks’, Int. J. Imaging Syst. Technol., 2019, 29, (3), pp. 234246.
    10. 10)
      • 13. Qiao, G.H., Leng, S.P., Zhang, K., et al: ‘Collaborative task offloading in vehicular edge multi-access networks’, IEEE Commun. Mag., 2018, 56, (8), pp. 4854.
    11. 11)
      • 28. Habibi, J.A., Djohar, F., Hakimi, R.: ‘Analyzing SDN-based vehicular network framework in 5G services: fog and Mobile edge computing’. Int. Conf. on Wireless and Telematics (ICWT), Nusa Dua, Bali, Indonesia, 2018.
    12. 12)
      • 14. Li, M., Zhu, L., Zhang, Z.: ‘Pros: A privacy-preserving route-sharing service via vehicular fog computing’, IEEE Access, 2018, 6, (1), pp. 6618866197.
    13. 13)
      • 23. Hao, Y., Chen, M., Hu, L., et al: ‘Energy efficient task caching and offloading for mobile edge computing’, IEEE Access, 2018, 6, (99), pp. 1136511373.
    14. 14)
      • 3. Liu, Q., Xu, D., Jiang, B., et al: ‘Prescribed-performance-based adaptive control for hybrid energy storage systems of battery and supercapacitor in electric vehicles’, Int. J. Innovative Comput. Inf. Control, 2020, 16, (2), pp. 571584.
    15. 15)
      • 33. Zhang, W., Wen, Y., Guan, K., et al: ‘Energy-optimal mobile cloud computing under stochastic wireless channel’, IEEE Trans. Wirel. Commun., 2013, 12, (9), pp. 45694581.
    16. 16)
      • 36. Cao, Y., Jiang, T., Wang, C.: ‘Optimal radio resource allocation for mobile task offloading in cellular networks’, IEEE Netw., 2014, 28, (5), pp. 6873.
    17. 17)
    18. 18)
      • 4. Zhou, Z., Gao, C., Chen, X., et al: ‘Social big data based content dissemination in internet of vehicles’, IEEE Trans. Ind. Inf., 2018, 14, (2), pp. 768777.
    19. 19)
      • 19. Wang, X.J., Ning, Z.L., Wang, L.: ‘Offloading in internet of vehicles: a fog-enabled real-time traffic management system’, IEEE Trans. Ind. Inf., 2018, 14, (10), pp. 45684578.
    20. 20)
      • 8. Cheng, S., Mingyue, Z., Weiping, P.: ‘Efficient pairing-based batch anonymous authentication scheme for VANET’, J. China Univ. Posts Telecommun., 2018, 25, (1), pp. 8594.
    21. 21)
      • 9. Malik, A., Pandey, B.: ‘CIAS: a comprehensive identity authentication scheme for providing security in VANET’, Int. J. Inf. Secur. Privacy, 2018, 12, (1), pp. 2941.
    22. 22)
    23. 23)
      • 10. Molina-Masegosa, R., Gozalvez, J.: ‘LTE-V for sidelink 5G V2X vehicular communications: a new 5G technology for short-range vehicle-to-everything communications’, IEEE Veh. Technol. Mag., 2017, 12, (4), pp. 3039.
    24. 24)
    25. 25)
      • 6. Li, L.I., Xiaodong, L.I., Ren, G.: ‘Abnormal node detection mechanism for VANET based on greenshield model’, Comput. Eng., 2018, 44, (2), pp. 114118.
    26. 26)
      • 25. Fan, Q., Ansari, N.: ‘Application aware workload allocation for edge computing based IoT’, IEEE Internet Things J., 2018, 5, (3), pp. 21462153.
    27. 27)
      • 24. Li, M., Yu, F.R., Si, P., et al: ‘Green machine-to-machine communications with mobile edge computing and wireless network virtualization’, IEEE Commun. Mag., 2018, 56, (5), pp. 148154.
    28. 28)
    29. 29)
      • 2. Almohammedi, A.A., Noordin, N.K., Sali, A., et al: ‘An accurate performance analysis of hybrid efficient and reliable MAC protocol in VANET under non-saturated conditions’, Int. J. Electr. Comput. Eng., 2017, 7, (2), pp. 9991011.
    30. 30)
      • 5. Samara, G.: ‘An improved CF-MAC protocol for VANET’, Int. J. Electr. Comput. Eng., 2019, 9, (4), pp. 26682674.
    31. 31)
      • 11. Chen, S.Z., Hu, J.L., Zhao, L.: ‘LTE-V: A TD-LTE-based V2X solution for future vehicular network’, IEEE IntThings J., 2016, 3, (6), pp. 9971005.
    32. 32)
      • 16. Yao, Y., Chang, X., Mišić, J.: ‘Reliable and secure vehicular fog service provision’, IEEE Internet Things J., 2019, 6, (1), pp. 734743.
    33. 33)
      • 34. Tsai, C.C., Hsu, C.F., Lin, X.C., et al: ‘Cooperative SLAM using fuzzy kalman filtering for a collaborative air-ground robotic system’, J. Chin. Inst. Eng., 2020, 43, (1), pp. 6779.
    34. 34)
      • 31. Aissioui, A., Ksentini, A., Gueroui, A.M., et al: ‘On enabling 5G automotive systems using follow me edge-cloud concept’, IEEE Trans. Veh. Technol., 2018, 67, (6), pp. 53025316.
    35. 35)
      • 17. Sookhak, M., Richard, F., He, Y.: ‘Fog vehicular computing: augmentation of fog computing using vehicular cloud computing’, IEEE Veh. Technol. Mag., 2017, 12, (3), pp. 5564.
    36. 36)
      • 20. Liu, T.: ‘Task offloading strategy for minimizing power consumption based on fog computing in internet of vehicle’, J. China Acad. Electron. Inf. Technol., 2019, 14, (7), pp. 774780.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2020.0134
Loading

Related content

content/journals/10.1049/joe.2020.0134
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address