Your browser does not support JavaScript!

access icon openaccess Dynamic switching control of buck converters using unsupervised machine learning methods

Loading full text...

Full text loading...



    1. 1)
      • 25. Sharifzadeh, F., Akbarizadeh, G., Kavian, Y.S.: ‘Ship classification in SAR images using a new hybrid CNN–MLP classifier’, J. Indian Soc. Remote Sens., 2019, 47, (4), pp. 551562.
    2. 2)
      • 8. Ayati, M., Sharifi, Z.: ‘Analysis and fuzzy control of chaotic behaviors in buck converter’. 4th Int. Conf. on Control, Instrumentation, and Automation (ICCIA), Qazvin, 2016.
    3. 3)
      • 11. Abegaz, B., Mahajan, S.: ‘Optimal perturbation tolerance in VSC-connected hybrid networks using an expert system on chip’, IEEE Trans. Power Electron., 2018, 33, (6), pp. 54425451.
    4. 4)
      • 22. Yan, Q., Xu, Y., Yang, X., et al: ‘Real-time foreground detection based on tempo-spatial consistency validation and Gaussian mixture model’. 2010 IEEE Int. Symp. on Broadband Multimedia Systems and Broadcasting (BMSB), Shanghai, 2010.
    5. 5)
      • 3. Zhao, X., Wang, X., Ma, L., et al: ‘Fuzzy approximation based asymptotic tracking control for a class of uncertain switched nonlinear systems’, IEEE Trans. Fuzzy Syst., 2020, 8, (4), pp. 632644.
    6. 6)
      • 1. Chang, Y., Wang, Y., Alsaadi, F.E., et al: ‘Adaptive fuzzy output-feedback tracking control for switched stochastic pure-feedback nonlinear systems’, Int. J. Adapt. Control and Signal Process., 2019, 33, pp. 15671582.
    7. 7)
      • 14. Nazari, Z., Kang, D., Asharif, M., et al: ‘A new hierarchical clustering algorithm’. Int. Conf. on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, 2015.
    8. 8)
      • 6. Muhurcu, G., Kose, E., Muhurcu, A., et al: ‘PI's parameter optimization based on IWO for optimal controlling of a buck converter's output’. in Int. Artificial Intelligence and Data Processing Symp. (IDAP), Malatya, 2017.
    9. 9)
      • 9. Qin, M., Xu, J., Zhou, G., et al: ‘Analysis and comparison of voltage-mode and current-mode pulse train control buck converter’. in 4th IEEE Conf. on Industrial Electronics and Applications, Xi'an, 2009.
    10. 10)
      • 23. Vlassis, N., Likas, A.: ‘A kurtosis-based dynamic approach to Gaussian mixture modeling’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 1999, 29, (4), pp. 393399.
    11. 11)
      • 16. Park, S., Park, Y.: ‘Photovoltaic power data analysis using hierarchical clustering’. Int. Conf. on Information Networking (ICOIN), Chiang Mai, 2018.
    12. 12)
      • 24. Samadi, F., Akbarizadeh, G., Kaabi, H.: ‘Change detection in SAR images using deep belief network: a new training approach based on morphological images’, IET Image Process., 2019, 13, (12), pp. 22552264.
    13. 13)
      • 19. Rzeszutek, R., Androutsos, D., Kyan, M.: ‘Self-organizing maps for topic trend discovery’, IEEE Signal Process. Lett., 2010, 17, (6), pp. 607610.
    14. 14)
      • 18. Lasri, R.: ‘Clustering and classification using a self-organizing MAP: the main flaw and the improvement perspectives’. SAI Computing Conf. (SAI), London, 2016.
    15. 15)
      • 5. Bendaoud, K.: ‘Fuzzy logic controller (FLC): application to control DC-DC buck converter’. Int. Conf. on Engineering & MIS (ICEMIS), Monastir, 2017.
    16. 16)
      • 20. Hartono, P., Take, Y.: ‘Pairwise elastic self-organizing maps’. IEEE Int. Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization, Nancy France, 2017.
    17. 17)
      • 2. Huo, X., Ma, L., Zhao, X., et al: ‘Event-triggered adaptive fuzzy output feedback control of MIMO switched nonlinear systems with average dwell time’, Appl. Math. Comput., 2020, 365, pp. 116.
    18. 18)
      • 4. Chang, X.-H., Yang, G.-H.: ‘Nonfragile H∞ filter design for T–S fuzzy systems in standard form’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 34483458.
    19. 19)
      • 12. Abegaz, B., Cmiel, M.: ‘Smart control of buck converters using a switching-based clustering algorithm’. IEEE System of Systems Engineering (SoSE), Anchorage, AK, May 2019.
    20. 20)
      • 15. Guo, J., Zhao, Y., Li, J.: ‘A multi-relational hierarchical clustering algorithm based on shared nearest neighbor similarity’. Int. Conf. on Machine Learning and Cybernetics, Hong Kong, 2007.
    21. 21)
      • 10. Andries, V., Goras, L., Buzo, A., et al: ‘Automatic tuning for a DC-DC buck converter with adaptive controller’. Int. Symp. on Signals, Circuits and Systems (ISSCS), Iasi, 2017.
    22. 22)
      • 13. Abegaz, B., Kueber, J.: ‘Smart control of automatic voltage regulators using K-means clustering’. 14th Annual Conf. System of Systems Engineering (SoSE), Anchorage, AK, May 2019.
    23. 23)
      • 21. Aiolli, F., Martino, G.D.S., Hagenbuchner, M., et al: ‘Learning nonsparse kernels by self-organizing maps for structured data’, IEEE Trans. Neural Netw., 2009, 20, (12), pp. 19381949.
    24. 24)
      • 17. Kumar, D., Kounte, M.: ‘Comparative study of self-organizing map and deep self-organizing map using MATLAB’. Int. Conf. on Communication and Signal Processing (ICCSP), Melmaruvathur, 2016.
    25. 25)
      • 7. Shinde, N., Sankad, S., Patil, S.L.: ‘Design and study voltage characteristics of buck converter by matlab simulink’. 2nd Int. Conf. on Trends in Electronics and Informatics (ICOEI), Tirunelveli, 2018.
    26. 26)
      • 26. Zalpour, M., Akbarizadeh, G., Sheini, N.A.: ‘A new approach for oil tank detection using deep learning features with control false alarm rate in high-resolution satellite imagery’, Int. J. Remote Sens., 2019, 41, (6), pp. 22392262.

Related content

This is a required field
Please enter a valid email address