Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Knowledge graph-based method for identifying topological structure of low-voltage distribution network

Loading full text...

Full text loading...

/deliver/fulltext/joe/2020/12/JOE.2019.1319.html;jsessionid=48k51wi8klc5a.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2019.1319&mimeType=html&fmt=ahah

References

    1. 1)
      • 12. Zhou, D., Zhang, M., Zhu, H., et al: ‘Research and application of intelligent distribution network dispatching interactive under the background of electric power system reformation’, Electr. Power Eng. Technol., 2018, 37, (2), pp. 8994.
    2. 2)
      • 18. Shi, B., Weninger, T.: ‘Discriminative predicate path mining for fact checking in knowledge graphs’, Knowl.-Based Syst., 2016, 104, pp. 123133.
    3. 3)
      • 9. Yan, Q., Wang, J., Huang, K., et al: ‘Analysis of equivalent topology and power- flow calculation model for pulsed power load’, Electr. Power Eng. Technol., 2018, 33, (23), pp. 55235531.
    4. 4)
      • 20. Wang, C., Ma, X., Chen, J., et al: ‘Information extraction and knowledge graph construction from geoscience literature’, Comput. Geosci., 2018, 112, pp. 112120.
    5. 5)
      • 13. Liu, Q., Li, Y., Duan, H., et al: ‘Knowledge graph construction techniques’, J. Comput. Res. Dev., 2016, 53, (3), pp. 582600.
    6. 6)
      • 1. Liu, Y., Zhang, N., Kang, C.: ‘A review on data-driven analysis and optimization of power grid’, Autom. Electr. Power Syst., 2018, 42, (6), pp. 157167.
    7. 7)
      • 11. Sharon, Y., Annaswamy, A., Legbedji, M.A., et al: ‘Topology identification in distribution network with limited measurements’. 2012 IEEE PES Innovative Smart Grid Technologies, ISGT 2012, Washington, DC, USA., 2012, pp. 16.
    8. 8)
      • 24. Typical design of infrastructure project for distribution network of 10 kV and below in Guangzhou Power Supply Bureau.2017-9-30.
    9. 9)
      • 22. Yang, S., Han, R.: ‘A visual analysis of the status quo and trend of knowledge mapping research’, Intell. Data Work, 2012, 33, (4), pp. 2228.
    10. 10)
      • 10. Li, Y., Feng, B., Li, G., et al: ‘Optimal distributed generation planning in active distribution networks considering integration of energy storage’, Appl. Energy, 2018, 210, pp. 10731081.
    11. 11)
      • 17. Uyar, A., Aliyu, F.M.: ‘Evaluating search features of Google knowledge graph and Bing satori’, Online Inf. Rev., 2015, 39, (2), pp. 197213.
    12. 12)
      • 25. Xiao, Y., Zhao, Y., Tu, Z., et al: ‘Topology checking method for low voltage distribution network based on improved Pearson correlation coefficient’, Power Syst. Prot. Control, 2019, 47, (11), pp. 3743.
    13. 13)
      • 7. Pappu, S.J., Bhatt, N., Pasumarthy, R., et al: ‘Identifying topology of low voltage (LV) distribution networks based on smart meter data’, IEEE Trans. Smart Grid, 2018, 9, pp. 51135122.
    14. 14)
      • 5. Luan, W., Peng, J., Maras, M., et al: ‘Distribution network topology error correction using smart meter data analytics’. 2013 IEEE Power and Energy Society General Meeting (PES), Vancouver, BC, Canada, 2013.
    15. 15)
      • 8. Lourenco, E.M., Coelho, E.P.R., Pal, B.C.: ‘Topology error and bad data processing in generalized state estimation’, IEEE Trans. Power Syst., 2015, 30, pp. 31903200.
    16. 16)
      • 16. Singh, M.: ‘Protection coordination in distribution systems with and without distributed energy resources – a review’, Prot. Control Mod. Power Syst., 2017, 2, (1), p. 27.
    17. 17)
      • 23. GB/T 23705-2009, Coding Rules for Place Names/Addresses of Digital City Geographic Information Public Platform.
    18. 18)
      • 15. Zhu, G., Iglesias, C.A.: ‘Sematch: semantic similarity framework for knowledge graphs’, Knowl.-Based Syst., 2017, 130, pp. 3032.
    19. 19)
      • 3. Li, Y., Xu, L., Li, Y.: ‘Topology connecting strategy of the modular multilevel matrix converter for optimal switching times’, Electr. Power Eng. Technol., 2018, 33, (2), pp. 342352.
    20. 20)
      • 2. Lang, Y., Li, J., Luo, Y., et al: ‘Large power grid topology analysis based on graph partitioning’, Power Syst. Prot. Control, 2017, 45, (23), pp. 108115.
    21. 21)
      • 6. Ying, J., Mei, J., Wang, Y., et al: ‘Research on verification method of feeder topology model for distribution main station’, Power Syst. Prot. Control, 2018, 46, (7), pp. 8389.
    22. 22)
      • 21. Shi, Z., Zhang, L., Hu, X., et al: ‘Power system transient stability rules extraction based on multi-attribute decision tree’, Trans. China Electrotech. Soc., 2019, 34, pp. 112. Available at https://doi.org/10.19595/j.cnki.1000-6753.tces.180648.
    23. 23)
      • 19. Li, X., Xu, J., Guo, Z., et al: ‘Construction and application of knowledge graph of power dispatching automation system’, Electr. Power, 2019, 52, pp. 18.
    24. 24)
      • 14. Liu, Z., Wang, H.: ‘Retrieval method for defect records of power equipment based on knowledge graph technology’, Autom. Electr. Power Syst., 2018, 42, (14), pp. 158164.
    25. 25)
      • 4. Liao, Y., Weng, Y., Wu, M., et al: ‘Distribution grid topology reconstruction: an information theoretic approach’. North American Power Symp., Charlotte, NC, USA., 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.1319
Loading

Related content

content/journals/10.1049/joe.2019.1319
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address