access icon openaccess Fault-tolerant control of inverter for the integration of solar PV under abnormal conditions

Solar photovoltaic (PV) is a prominent technology for the generation of electricity and its utility is on the rise. The PV-based generation facilities are susceptible to faults which if mismanaged, can result in an interruption in the supply of load demand and damage to the system. Faults in PV systems are caused by a broad range of reasons and hence, it is crucial to situate a fault-tolerant system for reliable operation. This study proposes a fault-tolerant control strategy for power electronics inverters for the integration of PV systems into power systems. This is a supervisory mechanism designed to aid PV systems to continue their operation during faults. A computer simulation verifies the performance of the proposed control strategy under a series of common fault conditions assuming a wide range of configurations for the PV system and load variations.

Inspec keywords: fault tolerant control; photovoltaic power systems; power electronics; power system control; invertors

Other keywords: load demand; fault-tolerant control strategy; PV-based generation facilities; solar PV; solar photovoltaic; power systems

Subjects: Control of electric power systems; Solar power stations and photovoltaic power systems; DC-AC power convertors (invertors)

References

    1. 1)
      • 36. Buddala, S.S.: ‘Analysis and modeling of parallel photovoltaic systems under partial shading conditions’. PhD dissertation, University of Toledo, 2014.
    2. 2)
      • 3. Nehme, B., Msirdi, N.K., Namaane, A., et al: ‘Analysis and characterization of faults in PV panels’, Energy Procedia, 2017, 111, pp. 10201029.
    3. 3)
      • 29. Neyman, J., Pearson, E.S.: ‘IX. on the problem of the most efficient tests of statistical hypotheses’, Philos. Trans. R. Soc. Lond. A, Math. Phys. Charact., 1933, 231, (694–706), pp. 289337.
    4. 4)
      • 4. Ali, M.H., Rabhi, A., El Hajjaji, A., et al: ‘Real time fault detection in photovoltaic systems’, Energy Procedia, 2017, 111, pp. 914923.
    5. 5)
      • 31. Carbone, M., Sajadi, A., Loparo, K.: ‘Bifurcation analysis of dc electric power systems for deep space exploration spacecraft’. 2019 IEEE Power and Energy Conf. at Illinois (PECI), Champaign, IL, USA., 2019, pp. 17.
    6. 6)
      • 7. Nazari, S., Shafai, B., Moradmand, A.: ‘Robust intrusion detection in dynamic networks’. 2019 IEEE Conf. on Control Technology and Applications (CCTA), Hong Kong, People's Republic of China, 2019, pp. 988993.
    7. 7)
      • 20. Davarifar, M., Rabhi, A., El Hajjaji, A., et al: ‘Comprehensive modulation and classification of faults and analysis their effect in dc side of photovoltaic system’, Energy Power Eng., 2013, 5, (4), pp. 230236.
    8. 8)
      • 22. Zhao, Y., De Palma, J.-F., Mosesian, J., et al: ‘Line–line fault analysis and protection challenges in solar photovoltaic arrays’, IEEE Trans. Ind. Electron., 2012, 60, (9), pp. 37843795.
    9. 9)
      • 5. Zhao, Y., Yang, L., Lehman, B., et al: ‘Decision tree-based fault detection and classification in solar photovoltaic arrays’. 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Orlando, FL, USA., 2012, pp. 9399.
    10. 10)
      • 13. Stonier, A.A., Lehman, B.: ‘An intelligent-based fault-tolerant system for solar-fed cascaded multilevel inverters’, IEEE Trans. Energy Convers., 2017, 33, (3), pp. 10471057.
    11. 11)
      • 27. Wei, Y., Li, Y., Xu, M., et al: ‘A review of early fault diagnosis approaches and their applications in rotating machinery’, Entropy, 2019, 21, (4), p. 409.
    12. 12)
      • 2. Appiah, A.Y., Zhang, X., Ayawli, B.B.K., et al: ‘Review and performance evaluation of photovoltaic array fault detection and diagnosis techniques’, Int. J. Photoenergy, 2019, 2019, pp. 119.
    13. 13)
      • 6. Johnson, J., Pahl, B., Luebke, C., et al: ‘Photovoltaic DC arc fault detector testing at Sandia National Laboratories’. 2011 37th IEEE Photovoltaic Specialists Conf., Seattle, WA, USA., 2011, pp. 003614003619.
    14. 14)
      • 10. Lin, X., Wang, Y., Pedram, M., et al: ‘Designing fault-tolerant photovoltaic systems’, IEEE Des. Test, 2013, 31, (3), pp. 7684.
    15. 15)
      • 14. Hwang, H.-R., Kim, B.-S., Cho, T.-H., et al: ‘Implementation of a fault diagnosis system using neural networks for solar panel’, Int. J. Control Autom. Syst., 2019, 17, (4), pp. 10501058.
    16. 16)
      • 17. Alam, M.K., Khan, F., Johnson, J., et al: ‘A comprehensive review of catastrophic faults in PV arrays: types, detection, and mitigation techniques’, IEEE J. Photovoltaics, 2015, 5, (3), pp. 982997.
    17. 17)
      • 25. Moradmand, P.A., Khaloozadeh, H.: ‘An experimental study of modeling and self-tuning regulator design for an electro-hydro servo-system’. 2017 5th Int. Conf. on Control, Instrumentation, and Automation (ICCIA), Shiraz, Iran, 2017, pp. 126131.
    18. 18)
      • 8. Chine, W., Mellit, A., Pavan, A.M., et al: ‘Fault detection method for grid-connected photovoltaic plants’, Renew. Energy, 2014, 66, pp. 99110.
    19. 19)
      • 11. Siri, K., Conner, K.A.: ‘Fault-tolerant scaleable solar power bus architectures with maximum power tracking’. APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conf. and Exposition (Cat. No. 01CH37181), Anaheim, CA, USA., 2001, vol. 2, pp. 10091014.
    20. 20)
      • 32. Lay-Ekuakille, A., Vergallo, P., Arnesano, A., et al: ‘Effects of environmental conditions on photovoltaic module measurements’. 2013 Seventh Int. Conf. on Sensing Technology (ICST), Wellington, New Zealand, 2013, pp. 933936.
    21. 21)
      • 9. Gautam, N., Kaushika, N.: ‘Network analysis of faulttolerant solar photovoltaic arrays’, Sol. Energy Mater. Sol. Cells, 2001, 69, (1), pp. 2542.
    22. 22)
      • 19. Yi, Z., Etemadi, A.H.: ‘Line-to-line fault detection for photovoltaic arrays based on multiresolution signal decomposition and two-stage support vector machine’, IEEE Trans. Ind. Electron., 2017, 64, (11), pp. 85468556.
    23. 23)
      • 23. Zhao, Y.: ‘Fault analysis in solar photovoltaic arrays’, 2010.
    24. 24)
      • 21. Sabbaghpur Arani, M., Hejazi, M.A.: ‘The comprehensive study of electrical faults in PV arrays’, J. Electr. Comput. Eng., 2016, 2016, pp. 110.
    25. 25)
      • 26. Shui, A., Chen, W., Zhang, P., et al: ‘Review of fault diagnosis in control systems’. 2009 Chinese Control and Decision Conf., Guilin, People's Republic of China, 2009, pp. 53245329.
    26. 26)
      • 35. Chao, K.-H., Lai, P.-L., Liao, B.-J.: ‘The optimal configuration of photovoltaic module arrays based on adaptive switching controls’, Energy Convers. Manage., 2015, 100, pp. 157167.
    27. 27)
      • 30. Adib, A., Mirafzal, B., Wang, X., et al: ‘On stability of voltage source inverters in weak grids’, IEEE Access, 2018, 6, pp. 44274439.
    28. 28)
      • 18. Johnson, J., Montoya, M., McCalmont, S., et al: ‘Differentiating series and parallel photovoltaic arc-faults’. 2012 38th IEEE Photovoltaic Specialists Conf., Austin, TX, USA., 2012, pp. 000720000726.
    29. 29)
      • 33. Mustafa, R.J., Gomaa, M.R., Al-Dhaifallah, M., et al: ‘Environmental impacts on the performance of solar photovoltaic systems’, Sustainability, 2020, 12, (2), p. 608.
    30. 30)
      • 34. Shah, A., Schade, H., Vanecek, M., et al: ‘Thin-film silicon solar cell technology’, Prog. Photovolt., Res. Appl., 2004, 12, (2–3), pp. 113142.
    31. 31)
      • 1. Lazard Consultant: ‘Levelized cost of energy and levelized cost of storage 2019’, 2019. Available at https://www.lazard.com/perspective/lcoe2019.
    32. 32)
      • 16. Verma, A., Chakraborti, A., Kumar, U., et al: ‘Fault tolerant control of hybrid wind-solar generation system’. 2019 IEEE Int. Conf. on Sustainable Energy Technologies (ICSET), Bhubaneswar, India, 2019, pp. 069074.
    33. 33)
      • 28. Mellit, A., Tina, G.M., Kalogirou, S.A.: ‘Fault detection and diagnosis methods for photovoltaic systems: a review’, Renew. Sust. Energy Rev., 2018, 91, pp. 117.
    34. 34)
      • 24. Venkatasubramanian, V., Rengaswamy, R., Yin, K., et al: ‘A review of process fault detection and diagnosis: part I: quantitative model-based methods’, Comput. Chem. Eng., 2003, 27, (3), pp. 293311.
    35. 35)
      • 15. Cheng, Y.: ‘Fault-tolerant resonant converters for highly efficient power conversion of solar panels in smart grids’. Proc. 14th Int. Power Electronics and Motion Control Conf. EPE-PEMC 2010, Ohrid, Macedonia, 2010, pp. T11T93.
    36. 36)
      • 12. Cardoso, A., Gil, P., Henriques, J., et al: ‘A robust fault tolerant control framework: application to a solar power plant’. Proc. Intelligent Systems Control, Salzburg, Austria, 2003.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.1280
Loading

Related content

content/journals/10.1049/joe.2019.1280
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading