Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Intelligent method to cryptocurrency price variation forecasting

Loading full text...

Full text loading...

/deliver/fulltext/joe/2020/9/JOE.2019.1236.html;jsessionid=2d1jy8jqmmq0f.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2019.1236&mimeType=html&fmt=ahah

References

    1. 1)
      • 11. Kim, Y.B., Lee, S.H., Kang, S.J., et al: ‘Virtual world currency value fluctuation prediction system based on user sentiment analysis’, Plos One, 2015, 10, (8), e0132944.
    2. 2)
      • 1. Barber, S., Boyen, X., Shi, E., et al: ‘Bitter to better how to make bitcoin a better currency’. Int. Conf. on Financial Cryptography and Data Security, Berlin, Heidelberg, Germany, 2012, pp. 399414.
    3. 3)
      • 9. Bernstein, M.S., Monroy-HernaÂndez, A., Harry, D., et al: ‘4chan and/b: an analysis of anonymity and ephemerality in a large online community’. ICWSM, Barcelona, Spain, 2011, pp. 5057.
    4. 4)
      • 15. Kim, Y.B., Lee, J., Park, N., et al: ‘When bitcoin encounters information in an online forum: using text mining to analyse user opinions and predict value fluctuation’. 2017.
    5. 5)
      • 13. Cohen-Charash, Y., Scherbaum, C.A., Kammeyer-Mueller, J.D., et al: ‘Mood and the market: can press reports of investors’ mood predict stock prices?’, Plos One, 2013, 8, (8), e72031.
    6. 6)
      • 2. Reid, F., Harrigan, M.: ‘An analysis of anonymity in the bitcoin system’, in Altshuler, Y., Elovici, Y., Cremers, A.B., et al (Eds.): ‘Security and privacy in social networks’(Springer, New York, NY, USA., 2013), pp. 197223.
    7. 7)
      • 14. Bollen, J., Mao, H., Zeng, X.: ‘Twitter mood predicts the stock market’, J. Comput. Sci., 2011, 2, (1), pp. 18.
    8. 8)
      • 8. Ahamad, S., Nair, M., Varghese, B., (Eds.): ‘A survey on crypto currencies’. Fourth Int. Conf. on Advances in Computer Science, AETACS, Citeseer, 2013.
    9. 9)
      • 7. Wright, C.S.: ‘Bitcoin: a peer-to-peer electronic cash system’ (Elsevier, Netherland, 2008). Available at SSRN: https://ssrn.com/abstract=3440802 or http://dx.doi.org/10.2139/ssrn.3440802.
    10. 10)
      • 3. Kim, Y.B., Kim, J.G., Kim, W., et al: ‘Predicting fluctuations in cryptocurrency transactions based on user comments and replies’. 2016.
    11. 11)
      • 12. Panzarasa, P., Opsahl, T., Carley, K.M.: ‘Patterns and dynamics of users' behavior and interaction: network analysis of an online community’, J. Am. Soc. Inf. Sci. Technol., 2009, 60, (5), pp. 911932.
    12. 12)
      • 10. Hau, Y.S., Kim, Y.-G.: ‘Why would online gamers share their innovation-conducive knowledge in the online game user community? Integrating individual motivations and social capital perspectives’, Comput. Hum. Behav., 2011, 27, (2), pp. 956970.
    13. 13)
      • 4. BoÈhme, R., Christin, N., Edelman, B., et al: ‘Bitcoin: economics, technology, and governance’, J. Econ. Perspect., 2015, 29, (2), pp. 213238.
    14. 14)
      • 6. Available at https://arzdigital.com/what-is-cryptocurrency/, accessed date December 2018.
    15. 15)
      • 5. Grinberg, R.: ‘Bitcoin: an innovative alternative digital currency’, Hastings Sci & Tech LJ., 2012, 4, p. 159.
    16. 16)
      • 16. Sin, E., Wang, L.: ‘Bitcoin price prediction using ensembles of neural networks’. 13th Int. Conf. on Natural Computation, Fuzzy Systems and Knowledge Discovery, Guilin, People's Republic of China, 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.1236
Loading

Related content

content/journals/10.1049/joe.2019.1236
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address