Research on semi-supervised community discovery algorithm based on new annealing
- Author(s): Jinghong Wang 1, 2, 3 ; Jiateng Yang 1, 2 ; Yichao He 4
-
-
View affiliations
-
Affiliations:
1:
College of Computer and Cyber Security, Hebei Normal University , Shijiazhuang City, Hebei Province , People's Republic of China ;
2: Hebei Key Lab Network and Information Security , Shijiazhuang City, Hebei Province , People's Republic of China ;
3: University of Illinois at Champaign , Urbana, Illinois 61801 , USA ;
4: School of Information Engineering, Hebei GEO University , Shijiazhuang Hebei 050031 , People's Republic of China
-
Affiliations:
1:
College of Computer and Cyber Security, Hebei Normal University , Shijiazhuang City, Hebei Province , People's Republic of China ;
- Source:
Volume 2020, Issue 12,
December
2020,
p.
1149 – 1154
DOI: 10.1049/joe.2019.1186 , Online ISSN 2051-3305
- « Previous Article
- Table of contents
- Next Article »
This is an open access article published by the IET under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/)
Received
21/10/2019,
Accepted
19/11/2019,
Published
13/01/2020

Full text loading...
/deliver/fulltext/joe/2020/12/JOE.2019.1186.html;jsessionid=h8a7h6efehs5l.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2019.1186&mimeType=html&fmt=ahah
Inspec keywords: complex networks; iterative methods; graph theory; social network theory; network theory (graphs); optimisation
Other keywords: must-link constraints; similarity information; community detection methods; semisupervised GN algorithm; new annealing maximisation algorithm; cannot-link constraints; semisupervised community discovery algorithm; node similarity
Subjects: Interpolation and function approximation (numerical analysis); Combinatorial mathematics; Systems theory applications in social science and politics; Optimisation techniques
References
-
-
1)
-
1. Xu, W., Yu, J.: ‘A novel approach to information fusion in multi-source datasets: a granular computing viewpoint’, Inf. Sci., 2017, 378, pp. 410–423.
-
-
2)
-
25. Raghavan, U.N., Albert, R., Kumara, S.: ‘Near linear time algorithm to detect community structures in large-scale networks’, Phys. Rev. E, 2007, 76, p. 036106.
-
-
3)
-
26. Sun, P.G., Gao, L., Shan Han, S.: ‘Identification of overlapping and non-overlapping community structure by fuzzy clustering in complex networks’, Inf. Sci., 2011, 181, (6), pp. 1060–1071.
-
-
4)
-
6. Xu, W., Li, M., Wang, X.: ‘Information fusion based on information entropy in fuzzy multi-source incomplete information system’, Int. J. Fuzzy Syst., 2017, 19, (4), pp. 1200–1216.
-
-
5)
-
4. Xu, W., Guo, Y.: ‘Generalized multigranulation double-quantitative decision-theoretic rough set’, Knowl.-Based Syst., 2016, 105, (1), pp. 190–205.
-
-
6)
-
14. Salton, G.: ‘Automatic text processing: the transformation, analysis, and retrieval of information by computer’ (Addison-Wesley, Academic Press, New York, 1989), pp. 123–145.
-
-
7)
-
18. Zhang, Z.Y.: ‘Community structure detection in complex networks with partial background information’, Europhys. Lett., 2013, 101, (4), p. 48005.
-
-
8)
-
12. Ma, X., Gao, L., Yong, X., et al: ‘Semi-supervised clustering algorithm for community detection in complex networks’, Physica A, 2010, 389, (1), pp. 187–197.
-
-
9)
-
24. Lusseau, D., Schneider, K., Boisseau, O., et al: ‘The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations’, Behav. Ecol. Sociobiol., 2003, 54, (4), pp. 396–405.
-
-
10)
-
16. Newman, M.E.J.: ‘Modularity and community structure in networks’, Proc. Natl. Acad. Sci., 2006, 103, (23), pp. 8577–8582.
-
-
11)
-
22. Ng, A.Y., Jordan, M.I., Weiss, Y.: ‘On spectral clustering: analysis and an algorithm’. Proc. Advances in Neural Information Processing Systems, New York, USA, 2001, pp. 849–856.
-
-
12)
-
19. Zhang, Z.Y., Sun, K.D., Wang, S.Q.: ‘Enhanced community structure detection in complex networks with partial background information’, Sci. Rep., 2013, 3, p. 3241.
-
-
13)
-
17. Ver Steeg, G., Galstyan, A., Allahverdyan, A.E.: ‘Statistical mechanics of semi-supervised clustering in sparse graphs’, J. Stat. Mech. Theory Exp., 2011, 2011, (8), p. P08009.
-
-
14)
-
7. Rosvall, M., Bergstrom, C.T.: ‘Maps of random walks on complex networks reveal community structure’, Proc. Natl. Acad. Sci., 2008, 105, (4), pp. 1118–1123.
-
-
15)
-
8. Sang, B., Guo, Y., Shi, D., et al: ‘Decision-theoretic rough set model of multi-source decision systems’, Int. J. Mach. Learn. Cybern., 2018, 9, pp. 1941–1954.
-
-
16)
-
11. Liu, Z., Li, P., Zheng, Y., et al: ‘Community detection by affinity propagation’. Technical report, 2008.
-
-
17)
-
5. Xu, W., Li, W.: ‘Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets’, IEEE Trans. Cybern., 2016, 46, (2), pp. 366–379.
-
-
18)
-
9. Chai, B., Wang, J., Yu, J.: ‘A parameter selection method of the deterministic anti-annealing algorithm for network exploring’, Neurocomputing, 2017, 226, pp. 192–199.
-
-
19)
-
13. Salton, G., Mcgill, M.J.: ‘Introduction to modern information retrieval’ (McGraw-Hill Book Company, Academic Press, New York, 1983), pp. 45–89.
-
-
20)
-
2. Jiang, Y.: ‘Community detection in complex networks’, Beijing Jiaotong University, Beijing, 2014, pp. 32–33.
-
-
21)
-
20. Cheng, J., Leng, M., Li, L., et al: ‘Active semi-supervised community detection based on must-link and cannot-link constraints’, PLOS ONE, 2014, 9, (10), pp. 1–18.
-
-
22)
-
21. Zachary, W.: ‘An information flow model for conflict and fission in small groups’, J. Anthropol. Res., 1977, 33, pp. 452–473.
-
-
23)
-
15. Hamers, L., Hemeryck, Y., Herweyers, G., et al: ‘Similarity measures in scientometric research: the Jaccard index versus Salton's cosine formula’, Inf. Process. Manage., 1989, 25, (3), pp. 315–318.
-
-
24)
-
3. Karthik, S., Aggarwal, C.C., Jaideep, S., et al: ‘Community detection with prior knowledge’. SIAM Data Mining, Dalian, Liaoning, China, 2013.
-
-
25)
-
10. Girvan, M., Newman, M.E.J.: ‘Community structure in social and biological networks’, Proc. Natl. Acad. Sci., 2002, 99, (12), pp. 7821–7826.
-
-
26)
-
23. Newman, M.E.J.: ‘Fast algorithm for detecting community structure in networks’, Phys. Rev. E, 2004, 69, p. 066133.
-
-
1)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.1186

Related content
content/journals/10.1049/joe.2019.1186
pub_keyword,iet_inspecKeyword,pub_concept
6
6
