access icon openaccess Breast mass classification method based on convolutional neural networks

To classify the X-ray mammograms images as benign or malignant is a long-standing unresolved problem, due to the high similarity of different between the mammograms images. In this study, a novel convolutional neural network based X-ray breast mass classification method is proposed. The method receives original breast mass image and its transformed image simultaneously, and extracts more abundant features from the breast mass images. Though the transformed image is a simple inverse of the original image, it allows another side of the thing to be perceived by the network at a very low cost. Experiment results demonstrate that the proposed method significantly outperforms the compared state-of-the-art classification methods for breast mass.

Inspec keywords: image segmentation; medical image processing; mammography; convolutional neural nets; cancer; feature extraction; image classification

Other keywords: original breast mass image; X-ray breast mass classification method; breast mass images; convolutional neural networks; X-ray mammograms images; transformed image

Subjects: X-ray techniques: radiography and computed tomography (biomedical imaging/measurement); Biology and medical computing; X-rays and particle beams (medical uses); Computer vision and image processing techniques; Neural computing techniques; Patient diagnostic methods and instrumentation; Image recognition

References

    1. 1)
      • 2. Rajaei, A., Dallalzadeh, E., Rangarajan, L.: ‘Symbolic representation and classification of medical X-ray images’, Signal Image Video Process., 2015, 9, (3), pp. 111.
    2. 2)
      • 17. Russakovsky, O., Deng, J., Su, H., et al: ‘Imagenet large scale visual recognition challenge’, Int. J. Comput. Vision, 2015, 115, (3), pp. 211252.
    3. 3)
      • 10. Jiang, P., Shackleford, J.A.: ‘CNN driven sparse multi-level B-spline image registration’. Proc. IEEE Conf. Comput. Vis. and Pattern Recognit., Salt Lake City, State of Utah, June 2018, pp. 92819289.
    4. 4)
      • 6. Yan, K., Xu, Y., Fang, X.Z., et al: ‘Protein fold recognition based on sparse representation based classification’, Artif Intell Med, 2017, 79, pp. 18.
    5. 5)
      • 11. Tian, C.W., Xu, Y., Fei, L.K., et al: ‘Deep learning for image denoising: a survey’, arXiv preprint arXiv:1810.05052, 2018.
    6. 6)
      • 8. Johra, F.T., Shuvo, M. M.: ‘Detection of breast cancer from histopathology image and classifying benign and malignant state using fuzzy logic’. Int. Conf. Electr. Eng. and Info. Commun. Technol, Dhaka, Bangladesh, Sept 2016, pp. 15.
    7. 7)
      • 7. Aarthi, R., Divya, K., Komala, N., et al: ‘Application of feature extraction and clustering in mammogram classification using support vector machine’. Int. Conf. on advanced computing, Chennai, India, Dec 2011, pp. 6267.
    8. 8)
      • 22. Jaffar, M.A.: ‘Deep learning based computer aided diagnosis system for breast mammograms’, Int. J. Adv. Comput. Sci. Appl., 2017, 8, (7), pp. 286290.
    9. 9)
      • 15. Qiu, Y., Yan, S., Gundreddy, R.R., et al: ‘A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology’, J. X-Ray Sci. Technol., 2017, 25, (5), pp. 751763.
    10. 10)
      • 18. Jiao, Z., Gao, X., Wang, Y., et al: ‘A deep feature based framework for breast masses classification’, Neurocomputing, 2016, 197, (C), pp. 221231.
    11. 11)
      • 4. Eltoukhy, M.M., Faye, I., Samir, B.B.: ‘A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation’, Comput. Biol. Med., 2012, 42, (1), pp. 123128.
    12. 12)
      • 16. Huynh, B.Q., Li, H., Giger, M.L.: ‘Digital mammographic tumor classification using transfer learning from deep convolutional neural networks’, J. Med. Imaging, 2016, 3, (3), pp. 034501034501.
    13. 13)
      • 21. Lecun, Y., Bottou, L., Bengio, Y., et al: ‘Gradient-based learning applied to document recognition’, Proc. IEEE, 1998, 86, (11), pp. 22782324.
    14. 14)
      • 14. Szegedy, C., Liu, W., Jia, Y., et al: ‘Going deeper with convolutions’. Comput. Vis. and Pattern Recognit., Boston, Massachusetts, June 2015, pp. 19.
    15. 15)
      • 20. Sun, L., Xu, Y.: ‘Research on classification method of mammography based on deep learning’, Comput. Eng. Appl., 2018, 54, (21), pp. 1319.
    16. 16)
      • 13. Zeiler, M.D., Fergus, R.: ‘Visualizing and understanding convolutional networks’. Eur. Conf. Comput. Vis., Zurich, Swiss, Sept 2014, pp. 818833.
    17. 17)
      • 5. Wen, J., Fang, X.Z., Cui, J.R., et al: ‘Robust sparse linear discriminant analysis’, IEEE Trans. Circuits Syst. Video Technol., 2018, 29, (2), pp. 390403.
    18. 18)
      • 19. Heath, M., Bowyer, K., Kopans, D., et al: ‘The digital database for screening mammography’, in ‘Digital mammography’ (Springer, Netherlands, 2001), pp. 457460.
    19. 19)
      • 12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’. Int. Conf. on Neural Inf. Process. Syst., Doha, Qatar, Nov 2012, pp. 10971105.
    20. 20)
      • 3. Alhadidi, M.R., Alarabeyyat, A., Alhanahnah, M., et al: ‘Breast cancer detection using K-nearest neighbor machine learning algorithm’. Int. Conf. on developments in e-systems engineering, Liverpool, UK, Aug 2016, pp. 3539.
    21. 21)
      • 9. Chen, Y., Li, W., Sakaridis, C., et al: ‘Domain adaptive faster r-cnn for object detection in the wild’. Proc. of the IEEE Conf. Comput. Vis. and Pattern Recognit., Salt Lake City, State of Utah, June 2018, pp. 33393348.
    22. 22)
      • 1. Torre, L.A., Bray, F., Siegel, R.L., et al: ‘Global cancer statistics, 2012’, CA-Cancer J. Clin., 2015, 65, (2), pp. 87108.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.1136
Loading

Related content

content/journals/10.1049/joe.2019.1136
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading