access icon openaccess Radar working-state identification using the hidden Markov model

Using the statistical signal processing principle in the field of natural language processing, a radar state identification approach based on the hidden Markov model (HMM) is proposed. Since each radar state is modelled by three model parameters of a HMM, the radar state identification can be solved from the solution of the evaluation problem of a HMM. Simulation results show that the HMM-based statistical identification method has tolerance to parameter error, which is suitable for the intelligent identification of the radar state in a complex environment.

Inspec keywords: statistical analysis; hidden Markov models; signal processing; natural language processing; radar signal processing

Other keywords: HMM-based statistical identification method; model parameters; radar state identification approach; intelligent identification; hidden Markov model; radar working-state identification; statistical signal processing principle; natural language processing

Subjects: Markov processes; Speech processing techniques; Signal processing and detection; Natural language interfaces; Markov processes; Radar equipment, systems and applications; Other topics in statistics; Speech recognition and synthesis

References

    1. 1)
      • 10. Rabiner, L., Juang, B.H.: ‘An introduction to hidden Markov models’, IEEE ASSP Mag., 1986, 3, (1), pp. 416.
    2. 2)
      • 1. Liu, H.: ‘Reseaches on identification key technology for radar emitter’. PhD thesis, National University of Defense Technology, 2005.
    3. 3)
      • 11. Cho, H., Chun, J., Lee, T., et al: ‘Spatiotemporal radar target identification using radar cross-section modeling and hidden Markov models’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (3), pp. 12841295.
    4. 4)
      • 4. Visnevski, N., Krishnamurthy, V., Wang, A., et al: ‘Syntactic modeling and signal processing of multifunction radars: a stochastic context-free grammar approach’, Proc. IEEE, 2007, 95, (5), pp. 10001025.
    5. 5)
      • 3. Arasaratnam, W., Haykin, S., Kirubarajan, T., et al: ‘Tracking the mode of operation of multi-function radar’. Proc. IEEE Radar Conf., Verona, NY, USA, 2006, pp. 233238.
    6. 6)
      • 2. Visnevski, N., Krishnamurthy, V., Haykin, S., et al: ‘Multi-function radar emitter modelling: a stochastic discrete event system approach’. Proc. of the 42th IEEE Conf. on Decision & Control, Maui, HI, USA, 2003, pp. 62956300.
    7. 7)
      • 8. Wang, A., Krishnamurthy, V.: ‘Signal interpretation of multifunction radars: modeling and statistical signal processing with stochastic context free grammar’, IEEE Trans. Signal Process., 2008, 56, (3), pp. 19201932.
    8. 8)
      • 5. Visnevski, N., Dilkes, F.A., Haykin, S., et al: ‘Nonself-embedding context-free grammars for multi-function radar modeling-electronic warfare application’. Proc. of IEEE Int. Radar Conf., Arlington, VA, USA, 2005, pp. 669674.
    9. 9)
      • 6. Wang, A., Krishnamurthy, V., Dilkes, F.A., et al: ‘Threat estimation by electronic surveillance of multifunction radars: a stochastic context free grammar approach’. Proc. of the 45th IEEE Conf. on Decision & Control, San Diego, CA, USA, 2006, pp. 21532158.
    10. 10)
      • 7. Wang, A., Krishnamurthy, V.: ‘Threat estimation of multifunction radars: modeling and statistical signal processing of stochastic context free grammars’. Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Honolulu, HI, USA, 2007, pp. 793796.
    11. 11)
      • 9. Wu, J.: ‘Beauty of mathematics’ (Posts & Telecom Press, Beijing, China, 2014).
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.0649
Loading

Related content

content/journals/10.1049/joe.2019.0649
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading