access icon openaccess Method for weak target detection in sea environment

In this study, a new method for sea surface target detection in low signal-to-clutter environment is proposed, which can not only reduce the computation amount but also suppress the sea clutter, static targets and noise. Firstly, the authors use a more general echo signal model, which is more matching for the sea environment. Next, a fast estimation technique with few searching times to reduce the computation of the detection process is put forward. Then, a canceller is designed, which has the merit of suppressing the strong sea clutter, static targets, and noise. Finally, the experiment results demonstrate that the proposed method can achieve high detection probability, fast estimation, and strong suppression ability.

Inspec keywords: echo; radar signal processing; radar detection; radar clutter; target tracking; probability; object detection

Other keywords: signal model; signal-to-clutter environment; weak target detection; sea surface target detection; static targets; strong sea clutter; strong suppression ability; high detection probability; sea environment; detection process; fast estimation technique

Subjects: Radar equipment, systems and applications; Optical, image and video signal processing; Other topics in statistics; Signal processing and detection

References

    1. 1)
      • 9. Zhao, X.H., Bing, D., Tao, R.: ‘Dimensional normalization in the digital computation of the fractional Fourier transform’, Trans. Beijing Inst. Technol., 2005, 25, (4), pp. 360364.
    2. 2)
      • 12. Xu, J., Yu, J., Peng, Y.N., et al: ‘Space–time Radon–Fourier transform and applications in radar target detection’, IET Radar Sonar Navig., 2012, 6, (9), pp. 846857.
    3. 3)
      • 11. Xu, J., Yu, J., Peng, Y.N., et al: ‘Radon-Fourier transform for radar target detection, I: generalized Doppler filter bank’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (2), pp. 11861202.
    4. 4)
      • 14. Chen, X., Guan, J., Liu, N., et al: ‘Maneuvering target detection via radon-fractional Fourier transform-based long-time coherent integration’, IEEE Trans. Signal Process., 2014, 62, (4), pp. 939953.
    5. 5)
      • 13. Xu, J., Yu, J., Peng, Y.N., et al: ‘ISAR imaging of targets with complex motion based on discrete chirp Fourier transform for cubic chirps’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (10), pp. 42014212.
    6. 6)
      • 7. Chen, X., Guan, J., Bao, Z., et al: ‘Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (2), pp. 10021018.
    7. 7)
      • 4. Shan, T., Ma, Y., Tao, R., et al: ‘Multi-channel NLMS-based sea clutter cancellation in passive bistatic radar’, IEICE Electron. Express, 2014, 10, (20), pp. 112.
    8. 8)
      • 1. Crombie, D.D.: ‘Doppler spectrum of sea echo at 13.56 Mc/s’, Nature, 1955, 175, (4459), pp. 681682.
    9. 9)
      • 5. Skolnik, M.I.: ‘Introduction to radar system’ (McGraw-Hill Companies Press, New York, NY, USA, 1962, 2nd edn. 2002).
    10. 10)
      • 2. Khan, R.H.: ‘Ocean-clutter model for high-frequency radar’, IEEE J. Ocean. Eng., 1991, 16, (2), pp. 181188.
    11. 11)
      • 8. Tao, R., Li, Y.L., Wang, Y.: ‘Short-time fractional Fourier transform and its applications’, IEEE Trans. Signal Process., 2010, 58, (5), pp. 25682580.
    12. 12)
      • 3. Panagopoulos, S., Soraghan, J.J.: ‘Small-target detection in sea clutter’, IEEE Trans. Geosci. Remote Sens., 2004, 42, (7), pp. 13551361.
    13. 13)
      • 10. Tao, R., Zhang, N., Wang, Y.: ‘Analyzing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar’, IET Radar Sonar Navig., 2011, 5, (1), pp. 1222.
    14. 14)
      • 6. Guan, J., Chen, X.L., Huang, Y., et al: ‘Adaptive fractional Fourier transform-based detection algorithm for moving target in heavy sea clutter’, IET Radar Sonar Navig., 2012, 6, (5), pp. 389401.
    15. 15)
      • 15. Namias, V.: ‘The fractional order Fourier transform and its application to quantum mechanics’, IMA J. Appl. Math., 1980, 25, (2), pp. 241265.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.0643
Loading

Related content

content/journals/10.1049/joe.2019.0643
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading