access icon openaccess Robust boundary extraction of great lakes by blocking Active Contour Model using Chinese GF-3 SAR data: a case study of Danjiangkou reservoir, China

Chinese Gaofen-3 (GF-3) satellite is a spaceborne multi-polarisation synthetic aperture radar (SAR) mission in C-band and it can be applied in the multiple fields. GF-3 can achieve accurate water boundary extraction based on its high-resolution SAR image products. This paper will study GF-3's capability to extract water boundary. Danjiangkou reservoir, the largest artificial freshwater lake in Asia and water source of Chinese South-to-North Water Diversion Project, is selected as the study region. A novel segmentation method is proposed which consists of two parts: the first part is rough segmentation to get the initial boundary; the second part is fine segmentation to get the final water boundary. Experimental results show that GF-3 has good performance in water boundary exaction by virtue of this novel method.

Inspec keywords: image segmentation; synthetic aperture radar; water resources; feature extraction; geophysical image processing; hydrological techniques; radar imaging; water quality; remote sensing by radar; lakes; reservoirs

Other keywords: artificial freshwater lake; active contour model; Chinese GF-3 SAR data; robust boundary extraction; initial boundary; Danjiangkou reservoir; Chinese Gaofen-3 satellite; final water boundary; South-to-North Water Diversion Project; GF-3 satellite; water source; multipolarisation synthetic aperture radar mission; water boundary extraction; high-resolution SAR image products

Subjects: Lakes; Radar equipment, systems and applications; Asia; Data and information; acquisition, processing, storage and dissemination in geophysics; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research; Oceanographic and hydrological techniques and equipment; Image recognition; Geophysics computing; Computer vision and image processing techniques; Water quality and water resources

References

    1. 1)
      • 15. Ferrentino, E., Nunziata, F., Migliaccio, M.: ‘Monitoring waterline variation of the Monte Cotugno lake using dual-polarimetric SAR data’. IEEE Int. Forum on Research and Technologies for Society and Industry, Modena, Italy, September 2017, pp. 14.
    2. 2)
      • 7. Karvonen, J., Simila, M., Makynen, M.: ‘Open water detection from Baltic sea ice Radarsat-1 SAR imagery’, IEEE Geosci. Remote Sens. Lett., 2004, 2, (3), pp. 275279.
    3. 3)
      • 18. PIESAT’. Available at http://www.piesat.cn/en/index.html, accessed 28 March 2018.
    4. 4)
      • 6. Horritt, M.S., Mason, D.C., Cobby, D.M., et al: ‘Waterline mapping in flooded vegetation from airborne SAR imagery’, Remote Sens. Environ., 2003, 85, (3), pp. 271281.
    5. 5)
      • 13. Caselles, V., Kimmel, R., Sapiro, G.: ‘Geodesic active contours’, Int. J. Comput. Vis., 1997, 22, (1), pp. 6179.
    6. 6)
      • 2. Curlander, J.C., Mcdonough, R.N.: ‘Synthetic aperture radar: system and signal processing’, vol. 2077, (Wiley, Hoboken, NJ, USA, 1991), pp. 37.
    7. 7)
      • 1. Sun, J., Yu, W., Deng, Y.: ‘The SAR payload design and performance for the GF-3 mission’, Sensors, 2017, 17, (10), p. 2419.
    8. 8)
      • 11. Al Fugura, A., Billa, L., Pradhan, B.: ‘Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image’, Estuar. Coast. Shelf Sci., 2011, 95, (4), pp. 395400.
    9. 9)
      • 14. Demir, N., Kaynarca, M., Oy, S.: ‘Extraction of coastlines with fuzzy approach using SENTINEL-1 SAR image’. ISPRS - Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7, Prague, Czech Republic, July 2016, pp. 747751.
    10. 10)
      • 5. Wang, Y., Sun, G., Liao, M., et al: ‘Using MODIS images to examine the surface extents and variations derived from the DEM and laser altimeter data in the Danjiangkou reservoir, China’, Int. J. Remote Sens., 2008, 29, (1), pp. 293311.
    11. 11)
      • 12. Sheng, G., Yang, W., Deng, X., et al: ‘Coastline detection in synthetic aperture radar (SAR) images by integrating waterhed transformation and controllable gradient vector flow (GVF) snake model’, IEEE J. Ocean. Eng., 2012, 37, (3), pp. 375383.
    12. 12)
      • 10. Chengjin, A., Zhaodong, N., Zhijun, L., et al: ‘Otsu threshold comparison and SAR water segmentation result analysis’, J. Electron. Inf. Technol., 2010, 32, (9), pp. 22152219.
    13. 13)
      • 8. Wang, H.W., Wang, C.T., Chen, K.S., et al: ‘Analysis change detection waterline in west Taiwan using satellite SAR imagery’, ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 12, (2), pp. 107119.
    14. 14)
      • 17. Cozzolino, D., Parrilli, S., Scarpa, G., et al: ‘Fast adaptive nonlocal SAR despeckling’, IEEE Geosci. Remote Sens. Lett., 2013, 11, (2), pp. 524528.
    15. 15)
      • 9. Wdowinski, S., Kim, S.W., Amelung, F., et al: ‘Space-based detection of wetlands’ surface water level changes from L-band SAR interferometry’, Remote Sens. Environ., 2008, 112, (3), pp. 681696.
    16. 16)
      • 16. Chumsamrong, W., Thitimajshima, P., Rangsanseri, Y.: ‘Synthetic aperture radar (SAR) image segmentation using a new modified fuzzy c-means algorithm’. IEEE Geoscience and Remote Sensing Symp., Proc. IGARSS 2000, Honolulu, HI, USA, July 2000, vol. 2, pp. 624626.
    17. 17)
      • 4. Li, W., Qin, Y., Sun, Y., et al: ‘Estimating the relationship between dam water level and surface water area for the Danjiangkou reservoir using Landsat remote sensing images’, Remote Sens. Lett., 2016, 7, (2), pp. 121130.
    18. 18)
      • 3. Zhang, Q.J.: ‘Polarimetric microwave remote sensing’ (China Aerospace Press, Beijing, China, 2015).
    19. 19)
      • 20. ENVI-IDL’. Available at http://blog.sina.com.cn/s/blog_764b1e9d0102v1pe.html, accessed 28 March 2018.
    20. 20)
      • 19. SRTM 90 m digital elevation database v4.1’. Available at http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1, accessed 28 March 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.0467
Loading

Related content

content/journals/10.1049/joe.2019.0467
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading