Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Circular SAR imaging algorithm based on polar format algorithm for moving target

For stationary targets, circular synthetic aperture radar (CSAR) imaging has tended to be mature and perfect. However, for moving targets, due to the long synthetic aperture and the variation of slant plane with the observation angle, the motion compensation is more complicated and has no effective approach. Based on the latest moving target trajectory reconstruction method in CSAR (2015), the polar format algorithm can be improved to image the moving targets when the motion parameters have been estimated. First, the authors placed the imaging reference point on the target to track it, and then compensated for the phase error caused by the incident angle changing and the wavefront curvature. The simulation results of point show that the algorithm is effective and accurate.

References

    1. 1)
      • 1. Soumekh, M.: ‘Reconnaissance with slant plane circular SAR imaging’, IEEE Trans. Image Process., 1996, 5, (8), pp. 12521265.
    2. 2)
      • 12. Ponce, O., Prats-Iraola, P., Pinheiro, M., et al: ‘Fully polarimetric high-resolution 3-D imaging with circular SAR at L-band’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (6), pp. 30743090.
    3. 3)
      • 6. Poisson, J., Oriot, H., Tupin, F.: ‘Ground moving target trajectory reconstruction in single-channel circular SAR’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (4), pp. 19761984.
    4. 4)
      • 4. Werness, S., Carrara, W., Joyce, L., et al: ‘Moving target imaging algorithm for SAR data’, IEEE Trans. Aerosp. Electron. Syst., 1990, 26, (1), pp. 5767.
    5. 5)
      • 5. Zhou, F., Wu, R., Xing, M., et al: ‘Approach for single channel SAR ground moving target imaging and motion parameter estimation’, IET Radar Sonar Navig., 2007, 1, (1), p. 59.
    6. 6)
      • 3. Hu, C., Li, Y., Dong, X., et al: ‘Optimal 3D deformation measuring in inclined geosynchronous orbit SAR differential interferometry’, Sci. China Inform. Sci., 2017, 60, p. 060303.
    7. 7)
      • 2. Ponce, O., Prats-Iraola, P., Scheiber, R., et al: ‘First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-band’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (10), pp. 61706196.
    8. 8)
      • 11. Mao, X., Zhu, D., Zhu, Z.: ‘Polar format algorithm wavefront curvature compensation under arbitrary radar flight path’, IEEE Geosci. Remote Sens. Lett., 2012, 9, (3), pp. 526530.
    9. 9)
      • 7. Doerry, A.: ‘Wavefront curvature limitations and compensation to polar format processing for synthetic aperture radar images’ (United States. Dept. of Energy, Washington, D.C., 2006).
    10. 10)
      • 10. Lin, Y., Tan, W., Hong, W., et al: ‘Polar format algorithm for circular synthetic aperture radar’, J. Electron. Inf. Technol., 2011, 32, (12), pp. 28022807.
    11. 11)
      • 8. Jakowatz, C.V.Jr., Doren, N.: ‘Comparison of polar formatting and back-projection algorithms for spotlight-mode SAR image formation’. Algorithms for Synthetic Aperture Radar Imagery XIII, Orlando, USA, 2006, vol. 6237, pp. 18.
    12. 12)
      • 9. Perry, R., DiPietro, R., Fante, R.: ‘SAR imaging of moving targets’, IEEE Trans. Aerosp. Electron. Syst., 1999, 35, (1), pp. 188200.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.0423
Loading

Related content

content/journals/10.1049/joe.2019.0423
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address