access icon openaccess Moving target detection in clutter background with FDA-MIMO radar via three-dimensional focus processing

Low observable moving target-detection technology under clutter background is the key factor affecting the radar performance. Here, frequency diverse array (FDA) MIMO radar is investigated for low-observable moving target detection. FDA-MIMO radar not only has all the advantages of phased array and MIMO radar, but also can make a two-dimensional joint estimation of the target distance and azimuth. In order to achieve coherent integration for Doppler processing, a novel three-dimensional processing method is proposed, i.e. space-range-Doppler focus (SRDF) processing. It utilises the property of FDA and high-resolution Doppler processing of MIMO. After discussing signal model of FDA-MIMO radar, the flowchart of SRDF-based low-observable moving target detection and estimation is provided. Finally, simulation of moving target detection in clutter background verifies that proposed method has better ability for joint angle-range-Doppler processing with higher resolutions.

Inspec keywords: radar imaging; radar signal processing; MIMO radar; target tracking; object detection; Doppler radar

Other keywords: two-dimensional joint estimation; clutter background; three-dimensional processing method; low observable moving target-detection technology; target distance; joint angle-range-Doppler processing; frequency diverse array MIMO radar; azimuth; space-range-Doppler focus processing; three-dimensional focus processing; radar performance; SRDF-based low-observable moving target detection; high-resolution Doppler processing; FDA-MIMO radar

Subjects: Optical, image and video signal processing; Radar equipment, systems and applications; Signal processing and detection

References

    1. 1)
      • 15. Liu, S.H., Shan, T., Tao, R., et al: ‘Sparse discrete fractional Fourier transform and its application’, IEEE Trans. Signal Process., 2014, 62, (24), pp. 65826594.
    2. 2)
      • 11. Xiong, J., Wang, W.Q., Gao, K.D.: ‘FDA-MIMO radar range–angle estimation: CRLB, MSE, and resolution analysis’, IEEE Trans. Aerosp. Electron. Syst.2018, 54, (1), pp. 284294.
    3. 3)
      • 13. Chen, X.L., Guan, J., Yu, X.H., et alRadar detection for moving target in short-time sparse fractional Fourier transform domain’, Acta Electron. Sin., 2017, 45, (12), pp. 30303036.
    4. 4)
      • 5. Haimovich, A.M., Blum, R.S., Cimini, L.J.: ‘MIMO radar with widely separated antennas’, IEEE Signal Proc. Mag., 2008, 25, (1), pp. 116129.
    5. 5)
      • 8. Wang, W.Q., So, H.C., Farina, A.: ‘An overview on time/frequency modulated array processing’, IEEE J. STSP, 2017, 11, (2), pp. 228246.
    6. 6)
      • 7. Antonik, P., Wicks, M.C., Griffiths, H.D., et al: ‘Range dependent beamforming’. Diversity, Int. Waveform Conf., And Design, Orlando, FL, USA, 2006.
    7. 7)
      • 2. Palamà, R., Greco, M.S., Stinco, P., et al: ‘Statistical analysis of bistatic and monostatic sea clutter’, IEEE Trans. Aerosp. Electron. Syst., 2015, 51, (4), pp. 30363054.
    8. 8)
      • 1. Chen, X.L., Guan, J., Liu, N.B., et al: ‘Detection of a low observable sea-surface target with micromotion via the radon-linear canonical transform’, IEEE Geosci. Remote Sens., 2014, 11, (7), pp. 12251229.
    9. 9)
      • 6. Chen, X.L., Guan, J., Liu, N.B., et al: ‘Maneuvering target detection via radon-fractional Fourier transform-based long-time coherent integration’, IEEE Trans. Signal Process., 2014, 62, (4), pp. 939953.
    10. 10)
      • 10. Xu, J., Liao, G., Zhang, Y., et al: ‘An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization’, IEEE J. STSP, 2017, 11, (2), pp. 309320.
    11. 11)
      • 4. Gao, Y., Li, H., Himed, B.: ‘Knowledge-aided range-spread target detection for distributed MIMO radar in nonhomogeneous environments’, IEEE Trans. Signal Process., 2017, 65, (3), pp. 617627.
    12. 12)
      • 12. Chen, X.L., Guan, J., Yu, X.H., et al: ‘Radar micro-Doppler signature extraction and detection via short-time sparse time-frequency distribution’, J. Electron. Inf. Technol., 2017, 39, (5), pp. 10171023.
    13. 13)
      • 9. Chen, B.X., Chen, X.L., Huang, Y., et al: ‘Transmit beampattern synthesis for the FDA radar’, IEEE Antennas Wirel. Propag., 2018, 17, (1), pp. 98101.
    14. 14)
      • 14. Gholami, A.: ‘Sparse time–frequency decomposition and some applications’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (6), pp. 35983604.
    15. 15)
      • 3. Chen, X.L., Guan, J., Li, X.Y., et al: ‘Effective coherent integration method for marine target with micromotion via phase differentiation and radon-lv's distribution’, IET Radar Sonar Navig., 2015, 9, (9), pp. 12841295.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.0341
Loading

Related content

content/journals/10.1049/joe.2019.0341
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading